These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35968040)
1. On automatic bias reduction for extreme expectile estimation. Girard S; Stupfler G; Usseglio-Carleve A Stat Comput; 2022; 32(4):64. PubMed ID: 35968040 [TBL] [Abstract][Full Text] [Related]
2. Extreme quantile estimation for partial functional linear regression models with heavy-tailed distributions. Zhu H; Li Y; Liu B; Yao W; Zhang R Can J Stat; 2022 Mar; 50(1):267-286. PubMed ID: 38239624 [TBL] [Abstract][Full Text] [Related]
3. Real-time changepoint detection in a nonlinear expectile model. Ciuperca G; Maciak M; Pešta M Metrika; 2023 Mar; ():1-27. PubMed ID: 37360276 [TBL] [Abstract][Full Text] [Related]
4. ESTIMATION FOR EXTREME CONDITIONAL QUANTILES OF FUNCTIONAL QUANTILE REGRESSION. Zhu H; Zhang R; Li Y; Yao W Stat Sin; 2022 Oct; 32(4):1767-1787. PubMed ID: 39077116 [TBL] [Abstract][Full Text] [Related]
5. A new GEE method to account for heteroscedasticity using asymmetric least-square regressions. Barry A; Oualkacha K; Charpentier A J Appl Stat; 2022; 49(14):3564-3590. PubMed ID: 36246864 [TBL] [Abstract][Full Text] [Related]
6. The generalized sigmoidal quantile function. Hutson AD Commun Stat Simul Comput; 2024; 53(2):799-813. PubMed ID: 38523867 [TBL] [Abstract][Full Text] [Related]
7. Estimation and inference for multikink expectile regression with longitudinal data. Li D; Wang L; Zhao W Stat Med; 2022 Mar; 41(7):1296-1313. PubMed ID: 34883531 [TBL] [Abstract][Full Text] [Related]
8. Improved Li D; Wang L J Appl Stat; 2022; 49(11):2767-2788. PubMed ID: 35909666 [TBL] [Abstract][Full Text] [Related]
9. Generalized expectile regression with flexible response function. Spiegel E; Kneib T; von Gablenz P; Otto-Sobotka F Biom J; 2021 Jun; 63(5):1028-1051. PubMed ID: 33734453 [TBL] [Abstract][Full Text] [Related]
10. A Method for Confidence Intervals of High Quantiles. Huang ML; Raney-Yan X Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33406678 [TBL] [Abstract][Full Text] [Related]
11. An Investigation of Quantile Function Estimators Relative to Quantile Confidence Interval Coverage. Wei L; Wang D; Hutson AD Commun Stat Theory Methods; 2015; 44(10):2107-2135. PubMed ID: 26924881 [TBL] [Abstract][Full Text] [Related]
12. The Financial Risk Measurement EVaR Based on DTARCH Models. Liu X; Tan Z; Wu Y; Zhou Y Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628234 [TBL] [Abstract][Full Text] [Related]
14. Heavy or semi-heavy tail, that is the question. Ownuk J; Baghishani H; Nezakati A J Appl Stat; 2021; 48(4):646-668. PubMed ID: 35706985 [TBL] [Abstract][Full Text] [Related]
16. A Continuous Threshold Expectile Model. Zhang F; Li Q Comput Stat Data Anal; 2017 Dec; 116():49-66. PubMed ID: 29255337 [TBL] [Abstract][Full Text] [Related]
17. Weighted expectile regression for right-censored data. Seipp A; Uslar V; Weyhe D; Timmer A; Otto-Sobotka F Stat Med; 2021 Nov; 40(25):5501-5520. PubMed ID: 34272749 [TBL] [Abstract][Full Text] [Related]
18. A distributed quantile estimation algorithm of heavy-tailed distribution with massive datasets. Xie X; Shi J Math Biosci Eng; 2020 Nov; 18(1):214-230. PubMed ID: 33525088 [TBL] [Abstract][Full Text] [Related]
19. New discrete heavy tailed distributions as models for insurance data. Nadarajah S; Lyu J PLoS One; 2023; 18(5):e0285183. PubMed ID: 37146020 [TBL] [Abstract][Full Text] [Related]
20. Modeling physical activity data using L Wirsik N; Otto-Sobotka F; Pigeot I Biom J; 2019 Nov; 61(6):1371-1384. PubMed ID: 31172553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]