These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 3596806)
1. Role of volatile fatty acids in colonization resistance to Clostridium difficile in gnotobiotic mice. Su WJ; Waechter MJ; Bourlioux P; Dolegeal M; Fourniat J; Mahuzier G Infect Immun; 1987 Jul; 55(7):1686-91. PubMed ID: 3596806 [TBL] [Abstract][Full Text] [Related]
2. Interaction of Clostridium difficile and Escherichia coli with microfloras in continuous-flow cultures and gnotobiotic mice. Wilson KH; Freter R Infect Immun; 1986 Nov; 54(2):354-8. PubMed ID: 3533778 [TBL] [Abstract][Full Text] [Related]
3. Role of volatile fatty acids in colonization resistance to Clostridium difficile. Rolfe RD Infect Immun; 1984 Jul; 45(1):185-91. PubMed ID: 6735467 [TBL] [Abstract][Full Text] [Related]
4. Evidence for clostridial implication in necrotizing enterocolitis through bacterial fermentation in a gnotobiotic quail model. Waligora-Dupriet AJ; Dugay A; Auzeil N; Huerre M; Butel MJ Pediatr Res; 2005 Oct; 58(4):629-35. PubMed ID: 16189185 [TBL] [Abstract][Full Text] [Related]
5. Production of volatile fatty acids as a result of bacterial interactions in the cecum of gnotobiotic rats and chickens fed a lactose-containing diet. Szylit O; Dabard J; Durand M; Dumay C; Bensaada M; Raibaud P Reprod Nutr Dev (1980); 1988; 28(6A):1455-64. PubMed ID: 3148988 [TBL] [Abstract][Full Text] [Related]
6. Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. Butel MJ; Roland N; Hibert A; Popot F; Favre A; Tessedre AC; Bensaada M; Rimbault A; Szylit O J Med Microbiol; 1998 May; 47(5):391-9. PubMed ID: 9879939 [TBL] [Abstract][Full Text] [Related]
7. Functional Intestinal Bile Acid 7α-Dehydroxylation by Studer N; Desharnais L; Beutler M; Brugiroux S; Terrazos MA; Menin L; Schürch CM; McCoy KD; Kuehne SA; Minton NP; Stecher B; Bernier-Latmani R; Hapfelmeier S Front Cell Infect Microbiol; 2016; 6():191. PubMed ID: 28066726 [TBL] [Abstract][Full Text] [Related]
8. Short-chain fatty acids in intestinal content of germfree mice monocontaminated with Escherichia coli or Clostridium difficile. Høverstad T; Midtvedt T; Bøhmer T Scand J Gastroenterol; 1985 Apr; 20(3):373-80. PubMed ID: 3890142 [TBL] [Abstract][Full Text] [Related]
9. Gnotobiotic models for study of the microbial ecology of Clostridium difficile and Escherichia coli. Wilson KH; Sheagren JN; Freter R; Weatherbee L; Lyerly D J Infect Dis; 1986 Mar; 153(3):547-51. PubMed ID: 3512730 [TBL] [Abstract][Full Text] [Related]
10. [Transfer of the cecal flora of the hamster to the germfree C3H mouse: use of this model to study the flora of the anti-Clostridium difficile barrier]. Su WJ; Bourlioux P; Bournaud M; Besnier MO; Fourniat J Can J Microbiol; 1986 Feb; 32(2):132-6. PubMed ID: 3516351 [TBL] [Abstract][Full Text] [Related]
11. Efficiency of various bacterial suspensions derived from cecal floras of conventional chickens in reducing the population level of Salmonella typhimurium in gnotobiotic mice and chicken intestines. Hudault S; Bewa H; Bridonneau C; Raibaud P Can J Microbiol; 1985 Sep; 31(9):832-8. PubMed ID: 3910208 [TBL] [Abstract][Full Text] [Related]
12. Pseudomembranous colitis in Clostridium difficile-monoassociated rats. Czuprynski CJ; Johnson WJ; Balish E; Wilkins T Infect Immun; 1983 Mar; 39(3):1368-76. PubMed ID: 6840842 [TBL] [Abstract][Full Text] [Related]
13. Intestinal bacteria antagonistic to Clostridium difficile in mice. Itoh K; Lee WK; Kawamura H; Mitsuoka T; Magaribuchi T Lab Anim; 1987 Jan; 21(1):20-5. PubMed ID: 3560860 [TBL] [Abstract][Full Text] [Related]
14. Changes in the mouse intestinal microflora during weaning: role of volatile fatty acids. Lee A; Gemmell E Infect Immun; 1972 Jan; 5(1):1-7. PubMed ID: 4656353 [TBL] [Abstract][Full Text] [Related]
15. Relationship between levels of Clostridium difficile toxin A and toxin B and cecal lesions in gnotobiotic mice. Vernet A; Corthier G; Dubos-Ramaré F; Parodi AL Infect Immun; 1989 Jul; 57(7):2123-7. PubMed ID: 2499546 [TBL] [Abstract][Full Text] [Related]
16. Indigenous bacteria influence the number of Salmonella typhimurium in the ileum of gnotobiotic mice. Roach S; Tannock GW Can J Microbiol; 1979 Dec; 25(12):1352-8. PubMed ID: 394821 [TBL] [Abstract][Full Text] [Related]
17. The size pH, and redox potential of the cecum in mice associated with various microbial floras. Celesk RA; Asano T; Wagner M Proc Soc Exp Biol Med; 1976 Feb; 151(2):260-3. PubMed ID: 2933 [TBL] [Abstract][Full Text] [Related]
18. Effect of bacterial contamination on cecal size and cecal contents of gnotobiotic rodents. Loesche WJ J Bacteriol; 1969 Aug; 99(2):520-6. PubMed ID: 5808078 [TBL] [Abstract][Full Text] [Related]
19. Antagonistic effect exerted by three strictly anaerobic strains against various strains of Clostridium perfringens in gnotobiotic rodent intestines. Yurdusev N; Nicolas JL; Ladire M; Ducluzeau R; Raibaud P Can J Microbiol; 1987 Mar; 33(3):226-31. PubMed ID: 2882830 [TBL] [Abstract][Full Text] [Related]
20. Ability of two Clostridium difficile strains from man and hare to produce cytotoxin in vitro and in gnotobiotic rodent intestines. Corthier G; Dubos F; Raibaud P Ann Inst Pasteur Microbiol (1985); 1986; 137B(1):113-21. PubMed ID: 3435052 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]