These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 35968324)
1. AdAPT-001, an oncolytic adenovirus armed with a TGF-β trap, overcomes Larson C; Oronsky B; Reid T Am J Cancer Res; 2022; 12(7):3141-3147. PubMed ID: 35968324 [TBL] [Abstract][Full Text] [Related]
2. BETA PRIME: Phase I study of AdAPT-001 as monotherapy and combined with a checkpoint inhibitor in superficially accessible, treatment-refractory solid tumors. Kesari S; Bessudo A; Gastman BR; Conley AP; Villaflor VM; Nabell LM; Madere D; Chacon E; Spencer C; Li L; Larson C; Reid T; Caroen S; Oronsky B; Stirn M; Williams J; Barve MA Future Oncol; 2022 Sep; 18(29):3245-3254. PubMed ID: 35950603 [TBL] [Abstract][Full Text] [Related]
3. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Mahoney KM; Freeman GJ; McDermott DF Clin Ther; 2015 Apr; 37(4):764-82. PubMed ID: 25823918 [TBL] [Abstract][Full Text] [Related]
4. The impact of oncolytic adenoviral therapy on the therapeutic efficacy of PD-1/PD-L1 blockade. Najafi S; Majidpoor J; Mortezaee K Biomed Pharmacother; 2023 May; 161():114436. PubMed ID: 36841031 [TBL] [Abstract][Full Text] [Related]
5. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. Hamdan F; Ylösmäki E; Chiaro J; Giannoula Y; Long M; Fusciello M; Feola S; Martins B; Feodoroff M; Antignani G; Russo S; Kari O; Lee M; Järvinen P; Nisen H; Kreutzman A; Leusen J; Mustjoki S; McWilliams TG; Grönholm M; Cerullo V J Immunother Cancer; 2021 Aug; 9(8):. PubMed ID: 34362830 [TBL] [Abstract][Full Text] [Related]
6. Toxicology and biodistribution of AdAPT-001, a replication-competent type 5 adenovirus with a trap for the immunosuppressive cytokine, TGF-beta. Larson C; Oronsky B; Abrouk NE; Oronsky A; Reid TR Am J Cancer Res; 2021; 11(10):5184-5189. PubMed ID: 34765319 [TBL] [Abstract][Full Text] [Related]
7. Anti-PD-L1/TGF-βR fusion protein (SHR-1701) overcomes disrupted lymphocyte recovery-induced resistance to PD-1/PD-L1 inhibitors in lung cancer. Cheng B; Ding K; Chen P; Ji J; Luo T; Guo X; Qiu W; Ma C; Meng X; Wang J; Yu J; Liu Y Cancer Commun (Lond); 2022 Jan; 42(1):17-36. PubMed ID: 34981670 [TBL] [Abstract][Full Text] [Related]
8. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. Sun F; Guo ZS; Gregory AD; Shapiro SD; Xiao G; Qu Z J Immunother Cancer; 2020 May; 8(1):. PubMed ID: 32461344 [TBL] [Abstract][Full Text] [Related]
9. Combined Inhibition of TGF-β Signaling and the PD-L1 Immune Checkpoint Is Differentially Effective in Tumor Models. Sow HS; Ren J; Camps M; Ossendorp F; Ten Dijke P Cells; 2019 Apr; 8(4):. PubMed ID: 30959852 [TBL] [Abstract][Full Text] [Related]
10. Surface engineering of oncolytic adenovirus for a combination of immune checkpoint blockade and virotherapy. Lv P; Chen X; Fu S; Ren E; Liu C; Liu X; Jiang L; Zeng Y; Wang X; Liu G Biomater Sci; 2021 Nov; 9(22):7392-7401. PubMed ID: 34751685 [TBL] [Abstract][Full Text] [Related]
11. Colocalized targeting of TGF-β and PD-L1 by bintrafusp alfa elicits distinct antitumor responses. Lan Y; Yeung TL; Huang H; Wegener AA; Saha S; Toister-Achituv M; Jenkins MH; Chiu LY; Lazorchak A; Tarcic O; Wang H; Qi J; Locke G; Kalimi D; Qin G; Marelli B; Yu H; Gross AW; Derner MG; Soloviev M; Botte M; Sircar A; Ma H; Sood VD; Zhang D; Jiang F; Lo KM J Immunother Cancer; 2022 Jul; 10(7):. PubMed ID: 35858707 [TBL] [Abstract][Full Text] [Related]
12. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Hayashi H; Nakagawa K Int J Clin Oncol; 2020 May; 25(5):818-830. PubMed ID: 31549270 [TBL] [Abstract][Full Text] [Related]
13. A Small Molecule Antagonist of PD-1/PD-L1 Interactions Acts as an Immune Checkpoint Inhibitor for NSCLC and Melanoma Immunotherapy. Wang Y; Gu T; Tian X; Li W; Zhao R; Yang W; Gao Q; Li T; Shim JH; Zhang C; Liu K; Lee MH Front Immunol; 2021; 12():654463. PubMed ID: 34054817 [TBL] [Abstract][Full Text] [Related]
14. New insight in endocrine-related adverse events associated to immune checkpoint blockade. Elia G; Ferrari SM; Galdiero MR; Ragusa F; Paparo SR; Ruffilli I; Varricchi G; Fallahi P; Antonelli A Best Pract Res Clin Endocrinol Metab; 2020 Jan; 34(1):101370. PubMed ID: 31983543 [TBL] [Abstract][Full Text] [Related]
15. Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: status of preclinical and clinical advances. Lind H; Gameiro SR; Jochems C; Donahue RN; Strauss J; Gulley JL; Palena C; Schlom J J Immunother Cancer; 2020 Feb; 8(1):. PubMed ID: 32079617 [TBL] [Abstract][Full Text] [Related]
16. The efficacy of PD-1/PD-L1 blockade in cold cancers and future perspectives. Majidpoor J; Mortezaee K Clin Immunol; 2021 May; 226():108707. PubMed ID: 33662590 [TBL] [Abstract][Full Text] [Related]
17. Immune checkpoint inhibitors in advanced renal cell carcinoma: experience to date and future directions. Atkins MB; Clark JI; Quinn DI Ann Oncol; 2017 Jul; 28(7):1484-1494. PubMed ID: 28383639 [TBL] [Abstract][Full Text] [Related]
18. Abscopal effects observed in cancer radiation therapy and oncolytic virotherapy: an overview. Romano G; Marino IR Drugs Today (Barc); 2019 Feb; 55(2):117-130. PubMed ID: 30816886 [TBL] [Abstract][Full Text] [Related]
19. Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Philips GK; Atkins M Int Immunol; 2015 Jan; 27(1):39-46. PubMed ID: 25323844 [TBL] [Abstract][Full Text] [Related]
20. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1. Yi M; Zhang J; Li A; Niu M; Yan Y; Jiao Y; Luo S; Zhou P; Wu K J Hematol Oncol; 2021 Feb; 14(1):27. PubMed ID: 33593403 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]