These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35968391)

  • 41. Constraints on human stereo dot matching.
    Harris JM; Parker AJ
    Vision Res; 1994 Oct; 34(20):2761-72. PubMed ID: 7975312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Efficiency of stereopsis in random-dot stereograms.
    Harris JM; Parker AJ
    J Opt Soc Am A; 1992 Jan; 9(1):14-24. PubMed ID: 1738046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Depth scaling in phantom and monocular gap stereograms using absolute distance information.
    Kuroki D; Nakamizo S
    Vision Res; 2006 Nov; 46(25):4206-16. PubMed ID: 17045325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differences between stereopsis, interocular correlation and binocularity.
    Livingstone MS
    Vision Res; 1996 Apr; 36(8):1127-40. PubMed ID: 8762717
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depth-related visually evoked potentials by dynamic random-dot stereograms in humans: negative correlation between the peaks elicited by convergent and divergent disparities.
    Sahinoğlu B
    Eur J Appl Physiol; 2004 May; 91(5-6):689-97. PubMed ID: 14704799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Depth inversion despite stereopsis: the appearance of random-dot stereograms on surfaces seen in reverse perspective.
    Yellott JI; Kaiwi JL
    Perception; 1979; 8(2):135-42. PubMed ID: 471677
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mixed-polarity random-dot stereograms alter GABA and Glx concentration in the early visual cortex.
    Rideaux R; Goncalves NR; Welchman AE
    J Neurophysiol; 2019 Aug; 122(2):888-896. PubMed ID: 31291136
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Eye movements in relation to loss and regaining of fusion of disjunctively moving random-dot stereograms.
    Erkelens CJ; Collewijn H
    Hum Neurobiol; 1985; 4(3):181-8. PubMed ID: 4066427
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple model accounts for the response of disparity-tuned V1 neurons to anticorrelated images.
    Read JC; Parker AJ; Cumming BG
    Vis Neurosci; 2002; 19(6):735-53. PubMed ID: 12688669
    [TBL] [Abstract][Full Text] [Related]  

  • 50. First- and second-order contributions to depth perception in anti-correlated random dot stereograms.
    Asher JM; Hibbard PB
    Sci Rep; 2018 Sep; 8(1):14120. PubMed ID: 30237535
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stereoscopic depth perception from oblique phase disparities.
    Patel SS; Ukwade MT; Stevenson SB; Bedell HE; Sampath V; Ogmen H
    Vision Res; 2003 Nov; 43(24):2479-92. PubMed ID: 13129536
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical processing of horizontal disparity information in the visual forebrain of behaving owls.
    Nieder A; Wagner H
    J Neurosci; 2001 Jun; 21(12):4514-22. PubMed ID: 11404439
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transfer of perceptual learning of depth discrimination between local and global stereograms.
    Gantz L; Bedell HE
    Vision Res; 2010 Aug; 50(18):1891-9. PubMed ID: 20600234
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of interocular correlation and contrast on stereoscopic depth magnitude estimation.
    Cisarik PM; Harwerth RS
    Optom Vis Sci; 2008 Mar; 85(3):164-73. PubMed ID: 18317331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Using Functional Near Infrared Spectroscopy (fNIRS) to Study Dynamic Stereoscopic Depth Perception.
    Ward LM; Morison G; Simpson WA; Simmers AJ; Shahani U
    Brain Topogr; 2016 Jul; 29(4):515-23. PubMed ID: 26900069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Content and context of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms.
    Grove PM; Gillam B; Ono H
    Vision Res; 2002 Jul; 42(15):1859-70. PubMed ID: 12128016
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vergence eye movements made in response to spatial-frequency-filtered random-dot stereograms.
    Mowforth P; Mayhew JE; Frisby JP
    Perception; 1981; 10(3):299-304. PubMed ID: 7329752
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impaired Potentiation of Theta Oscillations During a Visual Cortical Plasticity Paradigm in Individuals With Schizophrenia.
    Hamilton HK; Roach BJ; Cavus I; Teyler TJ; Clapp WC; Ford JM; Tarakci E; Krystal JH; Mathalon DH
    Front Psychiatry; 2020; 11():590567. PubMed ID: 33391054
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal properties of disparity processing revealed by dynamic random-dot stereograms.
    Gheorghiu E; Erkelens CJ
    Perception; 2005; 34(10):1205-19. PubMed ID: 16309115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spatial frequency integration for binocular correspondence in macaque area V4.
    Kumano H; Tanabe S; Fujita I
    J Neurophysiol; 2008 Jan; 99(1):402-8. PubMed ID: 17959744
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.