These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 35968804)

  • 1. A lanthanide nanocomposite with cross-relaxation enhanced near-infrared emissions as a ratiometric nanothermometer.
    Hu Q; Kong N; Chai Y; Xing Z; Wu Y; Zhang J; Li F; Zhu X
    Nanoscale Horiz; 2022 Sep; 7(10):1177-1185. PubMed ID: 35968804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo.
    Wu Y; Li F; Wu Y; Wang H; Gu L; Zhang J; Qi Y; Meng L; Kong N; Chai Y; Hu Q; Xing Z; Ren W; Li F; Zhu X
    Nat Commun; 2024 Mar; 15(1):2341. PubMed ID: 38491065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanide Luminescent Nanocomposite for Non-Invasive Temperature Monitoring in Vivo.
    Kong N; Hu Q; Wu Y; Zhu X
    Chemistry; 2022 Mar; 28(17):e202104237. PubMed ID: 34981597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lanthanide doped luminescence nanothermometers in the biological windows: strategies and applications.
    Nexha A; Carvajal JJ; Pujol MC; Díaz F; Aguiló M
    Nanoscale; 2021 May; 13(17):7913-7987. PubMed ID: 33899861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Mode Lanthanide-Doped Ratiometric Luminescent Nanothermometer for Near-Infrared Imaging within Biological Windows.
    Li H; Heydari E; Li Y; Xu H; Xu S; Chen L; Bai G
    Nanomaterials (Basel); 2023 Jan; 13(1):. PubMed ID: 36616129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasensitive NIR-II Ratiometric Nanothermometers for 3D In Vivo Thermal Imaging.
    Li D; Jia M; Jia T; Chen G
    Adv Mater; 2024 Mar; 36(11):e2309452. PubMed ID: 38088453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isoquinoline-based lanthanide complexes: bright NIR optical probes and efficient MRI agents.
    Caillé F; Bonnet CS; Buron F; Villette S; Helm L; Petoud S; Suzenet F; Tóth E
    Inorg Chem; 2012 Feb; 51(4):2522-32. PubMed ID: 22233349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and optical properties of a Y
    Wu L; Hu J; Zou Q; Lin Y; Huang D; Chen D; Lu H; Zhu H
    Nanoscale; 2020 Jul; 12(26):14180-14187. PubMed ID: 32602515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Visible to Near-Infrared Luminescence through a Selective Doping Strategy for High-Performance Temperature Sensing.
    Dai M; Li K; Xu H; Fu Z
    Inorg Chem; 2024 Jul; 63(29):13413-13424. PubMed ID: 38961680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminescent Nanothermometer Operating at Very High Temperature-Sensing up to 1000 K with Upconverting Nanoparticles (Yb
    Runowski M; Woźny P; Stopikowska N; Martín IR; Lavín V; Lis S
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43933-43941. PubMed ID: 32869638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lanthanide Upconversion Nanothermometer for Precise Temperature Mapping on Immune Cell Membrane.
    Liang H; Yang K; Yang Y; Hong Z; Li S; Chen Q; Li J; Song X; Yang H
    Nano Lett; 2022 Nov; 22(22):9045-9053. PubMed ID: 36326607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique.
    Qiu X; Zhou Q; Zhu X; Wu Z; Feng W; Li F
    Nat Commun; 2020 Jan; 11(1):4. PubMed ID: 31911593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From Nanothermometry to Bioimaging: Lanthanide-Activated KY
    Cressoni C; Vurro F; Milan E; Muccilli M; Mazzer F; Gerosa M; Boschi F; Spinelli AE; Badocco D; Pastore P; Delgado NF; Collado MH; Marzola P; Speghini A
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12171-12188. PubMed ID: 36826830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.
    Sun L; Qiu Y; Liu T; Feng J; Deng W; Shi L
    Luminescence; 2015 Nov; 30(7):1071-6. PubMed ID: 25691149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy Transfer Highway in Nd
    Cao C; Xue M; Zhu X; Yang P; Feng W; Li F
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):18540-18548. PubMed ID: 28492075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lanthanide-based nanomaterials for temperature sensing in the near-infrared spectral region: illuminating progress and challenges.
    Puccini A; Liu N; Hemmer E
    Nanoscale; 2024 Jun; 16(23):10975-10993. PubMed ID: 38607258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Class of Blue-LED-Excitable NIR-II Luminescent Nanoprobes Based on Lanthanide-Doped CaS Nanoparticles.
    Zhang M; Zheng W; Liu Y; Huang P; Gong Z; Wei J; Gao Y; Zhou S; Li X; Chen X
    Angew Chem Int Ed Engl; 2019 Jul; 58(28):9556-9560. PubMed ID: 31090985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NIR persistent luminescence of lanthanide ion-doped rare-earth oxycarbonates: the effect of dopants.
    Caratto V; Locardi F; Costa GA; Masini R; Fasoli M; Panzeri L; Martini M; Bottinelli E; Gianotti E; Miletto I
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17346-51. PubMed ID: 25285437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activatable Lanthanide Nanoprobes with Dye-Sensitized Second Near-Infrared Luminescence for
    Huang J; Zhang X; Li S; Qu F; Huang B; Cui R; Liu Y; Hu W; Yang X; Zhang Y
    Anal Chem; 2023 Feb; 95(7):3761-3768. PubMed ID: 36757879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.