These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 35968912)

  • 1. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield.
    Thapliyal G; Bhandari MS; Vemanna RS; Pandey S; Meena RK; Barthwal S
    Crit Rev Biotechnol; 2023 Sep; 43(6):884-903. PubMed ID: 35968912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Based Genome Editing and Its Applications in Woody Plants.
    Min T; Hwarari D; Li D; Movahedi A; Yang L
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From Genome Sequencing to CRISPR-Based Genome Editing for Climate-Resilient Forest Trees.
    Cao HX; Vu GTH; Gailing O
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerating wood domestication in forest trees through genome editing: Advances and prospects.
    Anders C; Hoengenaert L; Boerjan W
    Curr Opin Plant Biol; 2023 Feb; 71():102329. PubMed ID: 36586396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achievements and Challenges of Genomics-Assisted Breeding in Forest Trees: From Marker-Assisted Selection to Genome Editing.
    Ahmar S; Ballesta P; Ali M; Mora-Poblete F
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advancements in CRISPR/Cas technology for accelerated crop improvement.
    Das D; Singha DL; Paswan RR; Chowdhury N; Sharma M; Reddy PS; Chikkaputtaiah C
    Planta; 2022 Apr; 255(5):109. PubMed ID: 35460444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Application of CRISPR/Cas9 mediated gene editing in trees].
    Chen YN; Lu J
    Yi Chuan; 2020 Jul; 42(7):657-668. PubMed ID: 32694105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance.
    Maharajan T; Krishna TPA; Rakkammal K; Ceasar SA; Ramesh M
    Planta; 2022 Nov; 256(6):106. PubMed ID: 36326904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks.
    Tang T; Zhang N; Bongers FJ; Staab M; Schuldt A; Fornoff F; Lin H; Cavender-Bares J; Hipp AL; Li S; Liang Y; Han B; Klein AM; Bruelheide H; Durka W; Schmid B; Ma K; Liu X
    Elife; 2022 Nov; 11():. PubMed ID: 36444645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances and challenges in potato improvement using CRISPR/Cas genome editing.
    Chincinska IA; Miklaszewska M; Sołtys-Kalina D
    Planta; 2022 Dec; 257(1):25. PubMed ID: 36562862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas: A powerful tool for gene function study and crop improvement.
    Zhang D; Zhang Z; Unver T; Zhang B
    J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding Gene-Editing Potential in Crop Improvement with Pangenomes.
    Tay Fernandez CG; Nestor BJ; Danilevicz MF; Marsh JI; Petereit J; Bayer PE; Batley J; Edwards D
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives.
    Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S
    Cells; 2022 Dec; 11(23):. PubMed ID: 36497186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the potential of CRISPR/Cas genome editing for vegetable crop improvement: An overview of challenges and approaches.
    Das T; Anand U; Pal T; Mandal S; Kumar M; Radha ; Gopalakrishnan AV; Lastra JMP; Dey A
    Biotechnol Bioeng; 2023 May; 120(5):1215-1228. PubMed ID: 36740587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects.
    Salava H; Thula S; Mohan V; Kumar R; Maghuly F
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33445555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
    Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR
    Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding.
    Antony Ceasar S; Ignacimuthu S
    Plant Physiol Biochem; 2023 Mar; 196():724-730. PubMed ID: 36812799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotechnology to advance CRISPR-Cas genetic engineering of plants.
    Demirer GS; Silva TN; Jackson CT; Thomas JB; W Ehrhardt D; Rhee SY; Mortimer JC; Landry MP
    Nat Nanotechnol; 2021 Mar; 16(3):243-250. PubMed ID: 33712738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives.
    Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY
    Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-based genome editing in wheat: a comprehensive review and future prospects.
    Kumar R; Kaur A; Pandey A; Mamrutha HM; Singh GP
    Mol Biol Rep; 2019 Jun; 46(3):3557-3569. PubMed ID: 30941642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.