These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35969088)

  • 21. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro and in vivo evaluation of rotary-jet-spun poly(ɛ-caprolactone) with high loading of nano-hydroxyapatite.
    Andrade TM; Mello DCR; Elias CMV; Abdala JMA; Silva E; Vasconcellos LMR; Tim CR; Marciano FR; Lobo AO
    J Mater Sci Mater Med; 2019 Jan; 30(2):19. PubMed ID: 30689050
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile manufacturing of fused-deposition modeled composite scaffolds for tissue engineering-an embedding model with plasticity for incorporation of additives.
    Manjunath KS; Sridhar K; Gopinath V; Sankar K; Sundaram A; Gupta N; Shiek ASSJ; Shantanu PS
    Biomed Mater; 2020 Dec; 16(1):015028. PubMed ID: 33331292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional-poly(lactic acid) scaffolds coated with gelatin/magnesium-doped nano-hydroxyapatite for bone tissue engineering.
    Swetha S; Balagangadharan K; Lavanya K; Selvamurugan N
    Biotechnol J; 2021 Nov; 16(11):e2100282. PubMed ID: 34424602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration.
    Mehedi Hasan M; Nuruzzaman Khan M; Haque P; Rahman MM
    Int J Biol Macromol; 2018 Oct; 117():1110-1117. PubMed ID: 29885393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering.
    Gautam S; Sharma C; Purohit SD; Singh H; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 119():111588. PubMed ID: 33321633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation and properties of a highly dispersed nano-hydroxyapatite colloid used as a reinforcing filler for chitosan.
    Ying R; Wang H; Sun R; Chen K
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110689. PubMed ID: 32204004
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering.
    Paşcu EI; Stokes J; McGuinness GB
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4905-16. PubMed ID: 24094204
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts.
    Shi P; Liu M; Fan F; Yu C; Lu W; Du M
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():706-712. PubMed ID: 29853142
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ultrasound irradiation on the production of nHAp/MWCNT nanocomposites.
    Lobo AO; Zanin H; Siqueira IA; Leite NC; Marciano FR; Corat EJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4305-12. PubMed ID: 23910347
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arabinoxylan/graphene-oxide/nHAp-NPs/PVA bionano composite scaffolds for fractured bone healing.
    Aslam Khan MU; Haider A; Abd Razak SI; Abdul Kadir MR; Haider S; Shah SA; Hasan A; Khan R; Khan SD; Shakir I
    J Tissue Eng Regen Med; 2021 Apr; 15(4):322-335. PubMed ID: 33432773
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of Organic/Inorganic Compatible and Sustainably Bioactive Composites for Effective Bone Regeneration.
    Shao N; Guo J; Guan Y; Zhang H; Li X; Chen X; Zhou D; Huang Y
    Biomacromolecules; 2018 Sep; 19(9):3637-3648. PubMed ID: 30049206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New approach to modification of poly (l-lactic acid) with nano-hydroxyapatite improving functionality of human adipose-derived stromal cells (hASCs) through increased viability and enhanced mitochondrial activity.
    Smieszek A; Marycz K; Szustakiewicz K; Kryszak B; Targonska S; Zawisza K; Watras A; Wiglusz RJ
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():213-226. PubMed ID: 30813022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hierarchical composites of polyaniline-graphene nanoribbons-carbon nanotubes as electrode materials in all-solid-state supercapacitors.
    Liu M; Miao YE; Zhang C; Tjiu WW; Yang Z; Peng H; Liu T
    Nanoscale; 2013 Aug; 5(16):7312-20. PubMed ID: 23821299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel enhances osteoinductivity and mineralization.
    Li X; Chen M; Wang P; Yao Y; Han X; Liang J; Jiang Q; Sun Y; Fan Y; Zhang X
    Nanoscale; 2020 Jun; 12(24):12869-12882. PubMed ID: 32520065
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering.
    Shahbazarab Z; Teimouri A; Chermahini AN; Azadi M
    Int J Biol Macromol; 2018 Mar; 108():1017-1027. PubMed ID: 29122713
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro and in vivo studies of a novel nanohydroxyapatite/superhydrophilic vertically aligned carbon nanotube nanocomposites.
    Lobo AO; Siqueira IA; das Neves MF; Marciano FR; Corat EJ; Corat MA
    J Mater Sci Mater Med; 2013 Jul; 24(7):1723-32. PubMed ID: 23609000
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties and osteogenic potential of hydroxyapatite-PLGA-collagen biomaterial for bone regeneration.
    Bhuiyan DB; Middleton JC; Tannenbaum R; Wick TM
    J Biomater Sci Polym Ed; 2016 Aug; 27(11):1139-54. PubMed ID: 27120980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Vitro and in Vivo Studies of Novel Poly(D,L-lactic acid), Superhydrophilic Carbon Nanotubes, and Nanohydroxyapatite Scaffolds for Bone Regeneration.
    Siqueira IA; Corat MA; Cavalcanti Bd; Ribeiro Neto WA; Martin AA; Bretas RE; Marciano FR; Lobo AO
    ACS Appl Mater Interfaces; 2015 May; 7(18):9385-98. PubMed ID: 25899398
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.