These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 35969206)

  • 1. Droplet Microfluidics-Based Fabrication of Monodisperse Poly(ethylene glycol)-Fibrinogen Breast Cancer Microspheres for Automated Drug Screening Applications.
    Seeto WJ; Tian Y; Pradhan S; Minond D; Lipke EA
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3831-3841. PubMed ID: 35969206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres.
    Pradhan S; Clary JM; Seliktar D; Lipke EA
    Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture.
    Pradhan S; Hassani I; Seeto WJ; Lipke EA
    J Biomed Mater Res A; 2017 Jan; 105(1):236-252. PubMed ID: 27615742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid Production of Cell-Laden Microspheres Using a Flexible Microfluidic Encapsulation Platform.
    Seeto WJ; Tian Y; Pradhan S; Kerscher P; Lipke EA
    Small; 2019 Nov; 15(47):e1902058. PubMed ID: 31468632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual-phase, surface tension-based fabrication method for generation of tumor millibeads.
    Pradhan S; Chaudhury CS; Lipke EA
    Langmuir; 2014 Apr; 30(13):3817-25. PubMed ID: 24617794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Chip Device for
    Sheth S; Stealey S; Morgan NY; Zustiak SP
    Langmuir; 2021 Oct; 37(40):11793-11803. PubMed ID: 34597052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Templated Macroporous Polyethylene Glycol Hydrogels for Spheroid and Aggregate Cell Culture.
    Imaninezhad M; Hill L; Kolar G; Vogt K; Zustiak SP
    Bioconjug Chem; 2019 Jan; 30(1):34-46. PubMed ID: 30562006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monodisperse polyethylene glycol diacrylate hydrogel microsphere formation by oxygen-controlled photopolymerization in a microfluidic device.
    Krutkramelis K; Xia B; Oakey J
    Lab Chip; 2016 Apr; 16(8):1457-65. PubMed ID: 26987384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tunable three-dimensional engineered prostate cancer tissues for in vitro recapitulation of heterogeneous in vivo prostate tumor stiffness.
    Habbit NL; Anbiah B; Anderson L; Suresh J; Hassani I; Eggert M; Brannen A; Davis J; Tian Y; Prabhakarpandian B; Panizzi P; Arnold RD; Lipke EA
    Acta Biomater; 2022 Jul; 147():73-90. PubMed ID: 35551999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous spheroids with tunable interior morphologies by droplet-based microfluidics.
    Zhan Z; Liu Z; Nan H; Li J; Xie Y; Hu C
    Biofabrication; 2022 Apr; 14(2):. PubMed ID: 35290971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput double emulsion-based microfluidic production of hydrogel microspheres with tunable chemical functionalities toward biomolecular conjugation.
    Liu EY; Jung S; Weitz DA; Yi H; Choi CH
    Lab Chip; 2018 Jan; 18(2):323-334. PubMed ID: 29242870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion.
    Peter M; Singh A; Mohankumar K; Jeenger R; Joge PA; Gatne MM; Tayalia P
    ACS Appl Bio Mater; 2019 Feb; 2(2):916-929. PubMed ID: 35016295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Microfluidic Production of Droplets and Hydrogel Microspheres through Monolithically Integrated Microchannel Plates.
    Wu B; Xu X; Li G; Yang X; Du F; Tan W; Wang J; Dong S; Luo J; Wang X; Cao Z
    Anal Chem; 2023 Sep; 95(36):13586-13595. PubMed ID: 37624148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth.
    Casey J; Yue X; Nguyen TD; Acun A; Zellmer VR; Zhang S; Zorlutuna P
    Biomed Mater; 2017 Mar; 12(2):025009. PubMed ID: 28143999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-Instructive Microgels with Tailor-Made Physicochemical Properties.
    Allazetta S; Kolb L; Zerbib S; Bardy J; Lutolf MP
    Small; 2015 Nov; 11(42):5647-56. PubMed ID: 26349486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triple Emulsion-Based Rapid Microfluidic Production of Core-Shell Hydrogel Microspheres for Programmable Biomolecular Conjugation.
    Liu EY; Choi Y; Yi H; Choi CH
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):11579-11587. PubMed ID: 33651584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized poly(ethylene glycol) diacrylate microgels by microfluidics: In situ peptide encapsulation for in serum selective protein detection.
    Celetti G; Di Natale C; Causa F; Battista E; Netti PA
    Colloids Surf B Biointerfaces; 2016 Sep; 145():21-29. PubMed ID: 27137799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Encapsulation of Equine Endothelial Colony Forming Cells in Highly Uniform, Injectable Hydrogel Microspheres for Local Cell Delivery.
    Seeto WJ; Tian Y; Winter RL; Caldwell FJ; Wooldridge AA; Lipke EA
    Tissue Eng Part C Methods; 2017 Nov; 23(11):815-825. PubMed ID: 28762895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.