These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35969222)
1. Cr(VI) Reduction by Siderophore Alone and in Combination with Reduced Clay Minerals. Zhang D; Liu X; Guo D; Li G; Qu J; Dong H Environ Sci Technol; 2022 Sep; 56(17):12315-12324. PubMed ID: 35969222 [TBL] [Abstract][Full Text] [Related]
2. Effect of Siderophore DFOB on U(VI) Adsorption to Clay Mineral and Its Subsequent Reduction by an Iron-Reducing Bacterium. Zhang L; Dong H; Li R; Liu D; Bian L; Chen Y; Pan Z; Boyanov MI; Kemner KM; Wen J; Xia Q; Chen H; O'Loughlin EJ; Wang G; Huang Y Environ Sci Technol; 2022 Sep; 56(17):12702-12712. PubMed ID: 35980135 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and Products of Chromium(VI) Reduction by Iron(II/III)-Bearing Clay Minerals. Joe-Wong C; Brown GE; Maher K Environ Sci Technol; 2017 Sep; 51(17):9817-9825. PubMed ID: 28783317 [TBL] [Abstract][Full Text] [Related]
4. Siderophore and Organic Acid Promoted Dissolution and Transformation of Cr(III)-Fe(III)-(oxy)hydroxides. Saad EM; Sun J; Chen S; Borkiewicz OJ; Zhu M; Duckworth OW; Tang Y Environ Sci Technol; 2017 Mar; 51(6):3223-3232. PubMed ID: 28218537 [TBL] [Abstract][Full Text] [Related]
5. Synergistic Effects of Reduced Nontronite and Organic Ligands on Cr(VI) Reduction. Liu X; Dong H; Zeng Q; Yang X; Zhang D Environ Sci Technol; 2019 Dec; 53(23):13732-13741. PubMed ID: 31692337 [TBL] [Abstract][Full Text] [Related]
6. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals. Liao W; Ye Z; Yuan S; Cai Q; Tong M; Qian A; Cheng D Environ Sci Technol; 2019 Dec; 53(23):13767-13775. PubMed ID: 31702131 [TBL] [Abstract][Full Text] [Related]
7. Phytic acid inhibits Cr(VI) reduction on Fe(II)-bearing clay minerals: Changing reduction sites and electron transfer pathways. Wang S; Wu C; Peng W; Huang D; Liao W; Cui HJ Environ Pollut; 2024 Nov; 360():124701. PubMed ID: 39127337 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic considerations on the combined effect of electron shuttles and iron(III)-bearing clay mineral on Cr(VI) reduction by Shewanella oneidensis MR-1. Meng Y; Yuan Q; Luan F J Hazard Mater; 2023 Oct; 459():132144. PubMed ID: 37517234 [TBL] [Abstract][Full Text] [Related]
9. Iron(III) minerals and anthraquinone-2,6-disulfonate (AQDS) synergistically enhance bioreduction of hexavalent chromium by Shewanella oneidensis MR-1. Meng Y; Zhao Z; Burgos WD; Li Y; Zhang B; Wang Y; Liu W; Sun L; Lin L; Luan F Sci Total Environ; 2018 Nov; 640-641():591-598. PubMed ID: 29870936 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of Biogenic U(IV) in the Presence of Bioreduced Clay Minerals and Organic Ligands. Li R; Zhang L; Chen Y; Xia Q; Liu D; Huang Y; Dong H Environ Sci Technol; 2024 Jan; 58(3):1541-1550. PubMed ID: 38199960 [TBL] [Abstract][Full Text] [Related]
11. Siderophore-promoted dissolution of chromium from hydroxide minerals. Duckworth OW; Akafia MM; Andrews MY; Bargar JR Environ Sci Process Impacts; 2014 May; 16(6):1348-59. PubMed ID: 24683601 [TBL] [Abstract][Full Text] [Related]
12. Effects of clay minerals on Cr(VI) reduction by organic compounds. Deng B; Lan L; Houston K; Brady PV Environ Monit Assess; 2003 May; 84(1-2):5-18. PubMed ID: 12733805 [TBL] [Abstract][Full Text] [Related]
13. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415 [TBL] [Abstract][Full Text] [Related]
14. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate. Sarkar B; Naidu R; Krishnamurti GS; Megharaj M Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488 [TBL] [Abstract][Full Text] [Related]
15. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide. Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013 [TBL] [Abstract][Full Text] [Related]
16. Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Field EK; Gerlach R; Viamajala S; Jennings LK; Peyton BM; Apel WA Biodegradation; 2013 Jun; 24(3):437-50. PubMed ID: 23135488 [TBL] [Abstract][Full Text] [Related]
17. Iron species in layered clay: efficient electron shuttles for simultaneous conversion of dyes and Cr(VI). Liu R; Guo Y; Wang Z; Liu J Chemosphere; 2014 Jan; 95():643-6. PubMed ID: 24120014 [TBL] [Abstract][Full Text] [Related]
18. Combined Effects of Fe(III)-Bearing Nontronite and Organic Ligands on Biogenic U(IV) Oxidation. Xia Q; Jin Q; Chen Y; Zhang L; Li X; He S; Guo D; Liu J; Dong H Environ Sci Technol; 2022 Feb; 56(3):1983-1993. PubMed ID: 35012308 [TBL] [Abstract][Full Text] [Related]
19. Reduction of Plutonium(VI) to (V) by Hydroxamate Compounds at Environmentally Relevant pH. Morrison KD; Jiao Y; Kersting AB; Zavarin M Environ Sci Technol; 2018 Jun; 52(11):6448-6456. PubMed ID: 29767970 [TBL] [Abstract][Full Text] [Related]
20. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Yuan P; Fan M; Yang D; He H; Liu D; Yuan A; Zhu J; Chen T J Hazard Mater; 2009 Jul; 166(2-3):821-9. PubMed ID: 19135796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]