BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 35969459)

  • 1. Identifying Patients Who Meet Criteria for Genetic Testing of Hereditary Cancers Based on Structured and Unstructured Family Health History Data in the Electronic Health Record: Natural Language Processing Approach.
    Shi J; Morgan KL; Bradshaw RL; Jung SH; Kohlmann W; Kaphingst KA; Kawamoto K; Fiol GD
    JMIR Med Inform; 2022 Aug; 10(8):e37842. PubMed ID: 35969459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced family history-based algorithms increase the identification of individuals meeting criteria for genetic testing of hereditary cancer syndromes but would not reduce disparities on their own.
    Bradshaw RL; Kawamoto K; Bather JR; Goodman MS; Kohlmann WK; Chavez-Yenter D; Volkmar M; Monahan R; Kaphingst KA; Del Fiol G
    J Biomed Inform; 2024 Jan; 149():104568. PubMed ID: 38081564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing.
    Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T
    Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determining Onset for Familial Breast and Colorectal Cancer from Family History Comments in the Electronic Health Record.
    Mowery DL; Kawamoto K; Bradshaw R; Kohlmann W; Schiffman JD; Weir C; Borbolla D; Chapman WW; Del Fiol G
    AMIA Jt Summits Transl Sci Proc; 2019; 2019():173-181. PubMed ID: 31258969
    [No Abstract]   [Full Text] [Related]  

  • 5. The Value of Unstructured Electronic Health Record Data in Geriatric Syndrome Case Identification.
    Kharrazi H; Anzaldi LJ; Hernandez L; Davison A; Boyd CM; Leff B; Kimura J; Weiner JP
    J Am Geriatr Soc; 2018 Aug; 66(8):1499-1507. PubMed ID: 29972595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Augmented intelligence with natural language processing applied to electronic health records for identifying patients with non-alcoholic fatty liver disease at risk for disease progression.
    Van Vleck TT; Chan L; Coca SG; Craven CK; Do R; Ellis SB; Kannry JL; Loos RJF; Bonis PA; Cho J; Nadkarni GN
    Int J Med Inform; 2019 Sep; 129():334-341. PubMed ID: 31445275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying Information Gaps in Electronic Health Records by Using Natural Language Processing: Gynecologic Surgery History Identification.
    Moon S; Carlson LA; Moser ED; Agnikula Kshatriya BS; Smith CY; Rocca WA; Gazzuola Rocca L; Bielinski SJ; Liu H; Larson NB
    J Med Internet Res; 2022 Jan; 24(1):e29015. PubMed ID: 35089141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using natural language processing to identify opioid use disorder in electronic health record data.
    Singleton J; Li C; Akpunonu PD; Abner EL; Kucharska-Newton AM
    Int J Med Inform; 2023 Feb; 170():104963. PubMed ID: 36521420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Identifying Patients Who Meet Criteria for Genetic Testing of Hereditary Cancers Based on Structured and Unstructured Family Health History Data in the Electronic Health Record: Natural Language Processing Approach.
    Shi J; Morgan KL; Bradshaw RL; Jung SH; Kohlmann W; Kaphingst KA; Kawamoto K; Fiol GD
    JMIR Med Inform; 2022 Sep; 10(9):e42533. PubMed ID: 36099593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Language Processing of Clinical Notes to Identify Mental Illness and Substance Use Among People Living with HIV: Retrospective Cohort Study.
    Ridgway JP; Uvin A; Schmitt J; Oliwa T; Almirol E; Devlin S; Schneider J
    JMIR Med Inform; 2021 Mar; 9(3):e23456. PubMed ID: 33688848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Underserved populations with missing race ethnicity data differ significantly from those with structured race/ethnicity documentation.
    Sholle ET; Pinheiro LC; Adekkanattu P; Davila MA; Johnson SB; Pathak J; Sinha S; Li C; Lubansky SA; Safford MM; Campion TR
    J Am Med Inform Assoc; 2019 Aug; 26(8-9):722-729. PubMed ID: 31329882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural Language Processing for Improved Characterization of COVID-19 Symptoms: Observational Study of 350,000 Patients in a Large Integrated Health Care System.
    Malden DE; Tartof SY; Ackerson BK; Hong V; Skarbinski J; Yau V; Qian L; Fischer H; Shaw SF; Caparosa S; Xie F
    JMIR Public Health Surveill; 2022 Dec; 8(12):e41529. PubMed ID: 36446133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging Natural Language Processing to Improve Electronic Health Record Suicide Risk Prediction for Veterans Health Administration Users.
    Levis M; Levy J; Dent KR; Dufort V; Gobbel GT; Watts BV; Shiner B
    J Clin Psychiatry; 2023 Jun; 84(4):. PubMed ID: 37341477
    [No Abstract]   [Full Text] [Related]  

  • 14. Identifying Diabetes Related-Complications in a Real-World Free-Text Electronic Medical Records in Hebrew Using Natural Language Processing Techniques.
    Saban M; Lutski M; Zucker I; Uziel M; Ben-Moshe D; Israel A; Vinker S; Golan-Cohen A; Laufer I; Green I; Eldor R; Merzon E
    J Diabetes Sci Technol; 2024 Jan; ():19322968241228555. PubMed ID: 38288672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a natural language processing algorithm to extract seizure types and frequencies from the electronic health record.
    Decker BM; Turco A; Xu J; Terman SW; Kosaraju N; Jamil A; Davis KA; Litt B; Ellis CA; Khankhanian P; Hill CE
    Seizure; 2022 Oct; 101():48-51. PubMed ID: 35882104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Food and Drug Administration Biologics Effectiveness and Safety Initiative Facilitates Detection of Vaccine Administrations From Unstructured Data in Medical Records Through Natural Language Processing.
    Deady M; Ezzeldin H; Cook K; Billings D; Pizarro J; Plotogea AA; Saunders-Hastings P; Belov A; Whitaker BI; Anderson SA
    Front Digit Health; 2021; 3():777905. PubMed ID: 35005697
    [No Abstract]   [Full Text] [Related]  

  • 17. Extracting Medical Information From Free-Text and Unstructured Patient-Generated Health Data Using Natural Language Processing Methods: Feasibility Study With Real-world Data.
    Sezgin E; Hussain SA; Rust S; Huang Y
    JMIR Form Res; 2023 Mar; 7():e43014. PubMed ID: 36881467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated chart review utilizing natural language processing algorithm for asthma predictive index.
    Kaur H; Sohn S; Wi CI; Ryu E; Park MA; Bachman K; Kita H; Croghan I; Castro-Rodriguez JA; Voge GA; Liu H; Juhn YJ
    BMC Pulm Med; 2018 Feb; 18(1):34. PubMed ID: 29439692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leveraging natural language processing to identify eligible lung cancer screening patients with the electronic health record.
    Liu S; McCoy AB; Aldrich MC; Sandler KL; Reese TJ; Steitz B; Bian J; Wu Y; Russo E; Wright A
    Int J Med Inform; 2023 Sep; 177():105136. PubMed ID: 37392712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic extraction of imaging observation and assessment categories from breast magnetic resonance imaging reports with natural language processing.
    Liu Y; Zhu LN; Liu Q; Han C; Zhang XD; Wang XY
    Chin Med J (Engl); 2019 Jul; 132(14):1673-1680. PubMed ID: 31268905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.