BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 35969531)

  • 1. RAD51 is a druggable target that sustains replication fork progression upon DNA replication stress.
    Feu S; Unzueta F; Ercilla A; Pérez-Venteo A; Jaumot M; Agell N
    PLoS One; 2022; 17(8):e0266645. PubMed ID: 35969531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair.
    Petermann E; Orta ML; Issaeva N; Schultz N; Helleday T
    Mol Cell; 2010 Feb; 37(4):492-502. PubMed ID: 20188668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.
    Abeyta A; Castella M; Jacquemont C; Taniguchi T
    Cell Cycle; 2017 Feb; 16(4):335-347. PubMed ID: 27892797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability.
    Graziano S; Coll-Bonfill N; Teodoro-Castro B; Kuppa S; Jackson J; Shashkova E; Mahajan U; Vindigni A; Antony E; Gonzalo S
    J Biol Chem; 2021 Nov; 297(5):101301. PubMed ID: 34648766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart.
    Somyajit K; Saxena S; Babu S; Mishra A; Nagaraju G
    Nucleic Acids Res; 2015 Nov; 43(20):9835-55. PubMed ID: 26354865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The FLIP-FIGNL1 complex regulates the dissociation of RAD51/DMC1 in homologous recombination and replication fork restart.
    Zhang Q; Fan J; Xu W; Cao H; Qiu C; Xiong Y; Zhao H; Wang Y; Huang J; Yu C
    Nucleic Acids Res; 2023 Sep; 51(16):8606-8622. PubMed ID: 37439366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATAD5 promotes replication restart by regulating RAD51 and PCNA in response to replication stress.
    Park SH; Kang N; Song E; Wie M; Lee EA; Hwang S; Lee D; Ra JS; Park IB; Park J; Kang S; Park JH; Hohng S; Lee KY; Myung K
    Nat Commun; 2019 Dec; 10(1):5718. PubMed ID: 31844045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart.
    Berti M; Teloni F; Mijic S; Ursich S; Fuchs J; Palumbieri MD; Krietsch J; Schmid JA; Garcin EB; Gon S; Modesti M; Altmeyer M; Lopes M
    Nat Commun; 2020 Jul; 11(1):3531. PubMed ID: 32669601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments.
    Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V
    Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-enzymatic roles of human RAD51 at stalled replication forks.
    Mason JM; Chan YL; Weichselbaum RW; Bishop DK
    Nat Commun; 2019 Sep; 10(1):4410. PubMed ID: 31562309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage.
    Pardo B; Moriel-Carretero M; Vicat T; Aguilera A; Pasero P
    EMBO Rep; 2020 Jul; 21(7):e49367. PubMed ID: 32419301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RADX Modulates RAD51 Activity to Control Replication Fork Protection.
    Bhat KP; Krishnamoorthy A; Dungrawala H; Garcin EB; Modesti M; Cortez D
    Cell Rep; 2018 Jul; 24(3):538-545. PubMed ID: 30021152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WRNIP1 protects stalled forks from degradation and promotes fork restart after replication stress.
    Leuzzi G; Marabitti V; Pichierri P; Franchitto A
    EMBO J; 2016 Jul; 35(13):1437-51. PubMed ID: 27242363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional analysis of germline RAD51C missense variants highlight the role of RAD51C in replication fork protection.
    Kolinjivadi AM; Chong ST; Choudhary R; Sankar H; Chew EL; Yeo C; Chan SH; Ngeow J
    Hum Mol Genet; 2023 Apr; 32(8):1401-1409. PubMed ID: 36562461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oligomerization of DNA replication regulatory protein RADX is essential to maintain replication fork stability.
    Mohamed T; Adolph MB; Cortez D
    J Biol Chem; 2022 Mar; 298(3):101672. PubMed ID: 35120927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAD51 bypasses the CMG helicase to promote replication fork reversal.
    Liu W; Saito Y; Jackson J; Bhowmick R; Kanemaki MT; Vindigni A; Cortez D
    Science; 2023 Apr; 380(6643):382-387. PubMed ID: 37104614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25847274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deletion of BRCA2 exon 27 causes defects in response to both stalled and collapsed replication forks.
    Kim TM; Son MY; Dodds S; Hu L; Hasty P
    Mutat Res; 2014; 766-767():66-72. PubMed ID: 25773776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells.
    Yoon SW; Kim DK; Kim KP; Park KS
    Stem Cells Dev; 2014 Nov; 23(22):2700-11. PubMed ID: 24991985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RADX prevents genome instability by confining replication fork reversal to stalled forks.
    Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D
    Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.