These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35969543)

  • 1. Efficient Spiking Neural Networks With Radix Encoding.
    Wang Z; Gu X; Goh RSM; Zhou JT; Luo T
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3689-3701. PubMed ID: 35969543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SSTDP: Supervised Spike Timing Dependent Plasticity for Efficient Spiking Neural Network Training.
    Liu F; Zhao W; Chen Y; Wang Z; Yang T; Jiang L
    Front Neurosci; 2021; 15():756876. PubMed ID: 34803591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN.
    Hu Y; Zheng Q; Jiang X; Pan G
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):14546-14562. PubMed ID: 37721891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation.
    Hwang S; Chang J; Oh MH; Min KK; Jang T; Park K; Yu J; Lee JH; Park BG
    Front Neurosci; 2021; 15():629000. PubMed ID: 33679308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toward High-Accuracy and Low-Latency Spiking Neural Networks With Two-Stage Optimization.
    Wang Z; Zhang Y; Lian S; Cui X; Yan R; Tang H
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; PP():. PubMed ID: 38100345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DIET-SNN: A Low-Latency Spiking Neural Network With Direct Input Encoding and Leakage and Threshold Optimization.
    Rathi N; Roy K
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):3174-3182. PubMed ID: 34596559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Training much deeper spiking neural networks with a small number of time-steps.
    Meng Q; Yan S; Xiao M; Wang Y; Lin Z; Luo ZQ
    Neural Netw; 2022 Sep; 153():254-268. PubMed ID: 35759953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantization Framework for Fast Spiking Neural Networks.
    Li C; Ma L; Furber S
    Front Neurosci; 2022; 16():918793. PubMed ID: 35928011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Scatter-and-Gather Spiking Convolutional Neural Network on a Reconfigurable Neuromorphic Hardware.
    Zou C; Cui X; Kuang Y; Liu K; Wang Y; Wang X; Huang R
    Front Neurosci; 2021; 15():694170. PubMed ID: 34867142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CQ
    Yan Z; Zhou J; Wong WF
    IEEE Trans Pattern Anal Mach Intell; 2023 Oct; 45(10):11600-11611. PubMed ID: 37314899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SPIDE: A purely spike-based method for training feedback spiking neural networks.
    Xiao M; Meng Q; Zhang Z; Wang Y; Lin Z
    Neural Netw; 2023 Apr; 161():9-24. PubMed ID: 36736003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiking Deep Residual Networks.
    Hu Y; Tang H; Pan G
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):5200-5205. PubMed ID: 34723807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Optimized Spiking Neural Network Architectures for Classification Tasks on Embedded Platforms.
    Syed T; Kakani V; Cui X; Kim H
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34067080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A TTFS-based energy and utilization efficient neuromorphic CNN accelerator.
    Yu M; Xiang T; P S; Chu KTN; Amornpaisannon B; Tavva Y; Miriyala VPK; Carlson TE
    Front Neurosci; 2023; 17():1121592. PubMed ID: 37214405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-accuracy deep ANN-to-SNN conversion using quantization-aware training framework and calcium-gated bipolar leaky integrate and fire neuron.
    Gao H; He J; Wang H; Wang T; Zhong Z; Yu J; Wang Y; Tian M; Shi C
    Front Neurosci; 2023; 17():1141701. PubMed ID: 36968504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A universal ANN-to-SNN framework for achieving high accuracy and low latency deep Spiking Neural Networks.
    Wang Y; Liu H; Zhang M; Luo X; Qu H
    Neural Netw; 2024 Jun; 174():106244. PubMed ID: 38508047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks.
    Kugele A; Pfeil T; Pfeiffer M; Chicca E
    Front Neurosci; 2020; 14():439. PubMed ID: 32431592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures.
    Lee C; Sarwar SS; Panda P; Srinivasan G; Roy K
    Front Neurosci; 2020; 14():119. PubMed ID: 32180697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-performance deep spiking neural networks via at-most-two-spike exponential coding.
    Chen Y; Feng R; Xiong Z; Xiao J; Liu JK
    Neural Netw; 2024 Aug; 176():106346. PubMed ID: 38713970
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.