These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35969549)

  • 1. Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-R and Rank-1 Least Squares.
    Kuang LD; Lin QH; Gong XF; Zhang J; Li W; Li F; Calhoun VD
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2630-2640. PubMed ID: 35969549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data With a Phase Sparsity Constraint.
    Kuang LD; Lin QH; Gong XF; Cong F; Wang YP; Calhoun VD
    IEEE Trans Med Imaging; 2020 Apr; 39(4):844-853. PubMed ID: 31425066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.
    Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD
    J Neurosci Methods; 2015 Dec; 256():127-40. PubMed ID: 26327319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint.
    Han Y; Lin QH; Kuang LD; Gong XF; Cong F; Wang YP; Calhoun VD
    IEEE Trans Med Imaging; 2022 Mar; 41(3):667-679. PubMed ID: 34694992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive independent vector analysis for multi-subject complex-valued fMRI data.
    Kuang LD; Lin QH; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2017 Apr; 281():49-63. PubMed ID: 28214528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General nonunitary constrained ICA and its application to complex-valued fMRI data.
    Rodriguez PA; Anderson M; Calhoun VD; Adali T
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):922-9. PubMed ID: 25420255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ICA of full complex-valued fMRI data using phase information of spatial maps.
    Yu MC; Lin QH; Kuang LD; Gong XF; Cong F; Calhoun VD
    J Neurosci Methods; 2015 Jul; 249():75-91. PubMed ID: 25857613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic functional network connectivity analysis in schizophrenia based on a spatiotemporal CPD framework.
    Kuang LD; Li HQ; Zhang J; Gui Y; Zhang J
    J Neural Eng; 2024 Feb; 21(1):. PubMed ID: 38335544
    [No Abstract]   [Full Text] [Related]  

  • 9. A two-step low rank matrices approach for constrained MR image reconstruction.
    Ma S; Du H; Mei W
    Magn Reson Imaging; 2019 Jul; 60():20-31. PubMed ID: 30930307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources.
    Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z
    J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three layered sparse dictionary learning algorithm for enhancing the subject wise segregation of brain networks.
    Khalid MU; Nauman MM; Akram S; Ali K
    Sci Rep; 2024 Aug; 14(1):19070. PubMed ID: 39154133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse representation of complex-valued fMRI data based on spatiotemporal concatenation of real and imaginary parts.
    Zhang CY; Lin QH; Kuang LD; Li WX; Gong XF; Calhoun VD
    J Neurosci Methods; 2021 Mar; 351():109047. PubMed ID: 33385421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the encoding of functional brain networks: An fMRI classification comparison of non-negative matrix factorization (NMF), independent component analysis (ICA), and sparse coding algorithms.
    Xie J; Douglas PK; Wu YN; Brody AL; Anderson AE
    J Neurosci Methods; 2017 Apr; 282():81-94. PubMed ID: 28322859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps.
    Yi Z; Hu J; Zhao Y; Xiao L; Liu Y; Leong ATL; Chen F; Wu EX
    IEEE Trans Med Imaging; 2023 Jun; 42(6):1644-1655. PubMed ID: 37018640
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep learning-enhanced T
    Li Y; Wang Y; Qi H; Hu Z; Chen Z; Yang R; Qiao H; Sun J; Wang T; Zhao X; Guo H; Chen H
    Magn Reson Med; 2021 Sep; 86(3):1647-1661. PubMed ID: 33821529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerated MR parameter mapping with low-rank and sparsity constraints.
    Zhao B; Lu W; Hitchens TK; Lam F; Ho C; Liang ZP
    Magn Reson Med; 2015 Aug; 74(2):489-98. PubMed ID: 25163720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Sparse Dictionary Learning Separation (SDLS) Model With Adaptive Dictionary Mutual Incoherence Constraint for fMRI Data Analysis.
    Wang N; Zeng W; Chen D
    IEEE Trans Biomed Eng; 2016 Nov; 63(11):2376-2389. PubMed ID: 26929024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of nonnegative matrix factorization algorithms to estimate task-related neuronal activities from fMRI data.
    Ding X; Lee JH; Lee SW
    Magn Reson Imaging; 2013 Apr; 31(3):466-76. PubMed ID: 23200679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast multi-component analysis using a joint sparsity constraint for MR fingerprinting.
    Nagtegaal M; Koken P; Amthor T; Doneva M
    Magn Reson Med; 2020 Feb; 83(2):521-534. PubMed ID: 31418918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.