These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 35969550)
1. Deep Learning-Based Near-Fall Detection Algorithm for Fall Risk Monitoring System Using a Single Inertial Measurement Unit. Choi A; Kim TH; Yuhai O; Jeong S; Kim K; Kim H; Mun JH IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2385-2394. PubMed ID: 35969550 [TBL] [Abstract][Full Text] [Related]
2. Use of Average Vertical Velocity and Difference in Altitude for Improving Automatic Fall Detection from Trunk Based Inertial and Barometric Pressure Measurements. Musngi MM; Aziz O; Zihajehzadeh S; Nazareth GC; Tae CG; Park EJ Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5146-5149. PubMed ID: 30441498 [TBL] [Abstract][Full Text] [Related]
3. Fall-detection solution for mobile platforms using accelerometer and gyroscope data. De Cillisy F; De Simioy F; Guidoy F; Incalzi RA; Setolay R Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():3727-30. PubMed ID: 26737103 [TBL] [Abstract][Full Text] [Related]
4. Inertial sensing-based pre-impact detection of falls involving near-fall scenarios. Lee JK; Robinovitch SN; Park EJ IEEE Trans Neural Syst Rehabil Eng; 2015 Mar; 23(2):258-66. PubMed ID: 25252283 [TBL] [Abstract][Full Text] [Related]
5. An Enhanced Ensemble Deep Neural Network Approach for Elderly Fall Detection System Based on Wearable Sensors. Mohammad Z; Anwary AR; Mridha MF; Shovon MSH; Vassallo M Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430686 [TBL] [Abstract][Full Text] [Related]
6. Preliminary Examination of the Accuracy of a Fall Detection Device Embedded into Hearing Instruments. Burwinkel JR; Xu B; Crukley J J Am Acad Audiol; 2020 Jun; 31(6):393-403. PubMed ID: 31914373 [TBL] [Abstract][Full Text] [Related]
7. Highly Portable, Sensor-Based System for Human Fall Monitoring. Mao A; Ma X; He Y; Luo J Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28902149 [TBL] [Abstract][Full Text] [Related]
8. Acceleration Magnitude at Impact Following Loss of Balance Can Be Estimated Using Deep Learning Model. Kim TH; Choi A; Heo HM; Kim H; Mun JH Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33126491 [TBL] [Abstract][Full Text] [Related]
9. Threshold-based fall detection using a hybrid of tri-axial accelerometer and gyroscope. Wang FT; Chan HL; Hsu MH; Lin CK; Chao PK; Chang YJ Physiol Meas; 2018 Oct; 39(10):105002. PubMed ID: 30207983 [TBL] [Abstract][Full Text] [Related]
10. An Effective Deep Learning Framework for Fall Detection: Model Development and Study Design. Zhang J; Li Z; Liu Y; Li J; Qiu H; Li M; Hou G; Zhou Z J Med Internet Res; 2024 Aug; 26():e56750. PubMed ID: 39102676 [TBL] [Abstract][Full Text] [Related]
11. Triaxial Accelerometer-Based Falls and Activities of Daily Life Detection Using Machine Learning. Althobaiti T; Katsigiannis S; Ramzan N Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640526 [TBL] [Abstract][Full Text] [Related]
12. Accuracy of a wavelet-based fall detection approach using an accelerometer and a barometric pressure sensor. Ejupi A; Galang C; Aziz O; Park EJ; Robinovitch S Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2150-2153. PubMed ID: 29060322 [TBL] [Abstract][Full Text] [Related]
13. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning. Kiprijanovska I; Gjoreski H; Gams M Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750 [TBL] [Abstract][Full Text] [Related]
14. Fall detection algorithms for real-world falls harvested from lumbar sensors in the elderly population: a machine learning approach. Bourke AK; Klenk J; Schwickert L; Aminian K; Ihlen EA; Mellone S; Helbostad JL; Chiari L; Becker C Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3712-3715. PubMed ID: 28269098 [TBL] [Abstract][Full Text] [Related]
15. Implementation of a real-time fall detection system based on hybrid threshold analysis algorithm and machine learning algorithm. Xu Y; He Z; Zhang X; Li D; Li R; Ni W Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4205-4209. PubMed ID: 36085845 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry. Nait Aicha A; Englebienne G; van Schooten KS; Pijnappels M; Kröse B Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29786659 [TBL] [Abstract][Full Text] [Related]
17. A Novel Hybrid Deep Neural Network to Predict Pre-impact Fall for Older People Based on Wearable Inertial Sensors. Yu X; Qiu H; Xiong S Front Bioeng Biotechnol; 2020; 8():63. PubMed ID: 32117941 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Inertial Sensor-Based Pre-Impact Fall Detection Algorithms Using Public Dataset. Ahn S; Kim J; Koo B; Kim Y Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781886 [TBL] [Abstract][Full Text] [Related]
19. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Bourke AK; Lyons GM Med Eng Phys; 2008 Jan; 30(1):84-90. PubMed ID: 17222579 [TBL] [Abstract][Full Text] [Related]
20. Automatic individual calibration in fall detection--an integrative ambulatory measurement framework. Liu J; Lockhart TE Comput Methods Biomech Biomed Engin; 2013; 16(5):504-10. PubMed ID: 22149355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]