These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 35969562)

  • 1. Modeling Energy Aware Photoplethysmography for Personalized Healthcare Applications.
    Ownby NB; Flynn KA; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):570-579. PubMed ID: 35969562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PPG EduKit: An Adjustable Photoplethysmography Evaluation System for Educational Activities.
    Solé Morillo Á; Lambert Cause J; Baciu VE; da Silva B; Garcia-Naranjo JC; Stiens J
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Tactile-Pattern-Integrated Sensing Window for More Consistent Photoplethysmography (PPG) Measurements.
    Choi C; Hwang J; Lee J; Ko BH; Kim YH; Choo H
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6810-6813. PubMed ID: 34892671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of makeup on remote-PPG monitoring.
    Wang W; Shan C
    Biomed Phys Eng Express; 2020 Mar; 6(3):035004. PubMed ID: 33438649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography.
    Chatterjee S; Kyriacou PA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive pulse width control and sampling for low power pulse oximetry.
    Gubbi SV; Amrutur B
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):272-83. PubMed ID: 25014964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Textile Sleeve for Monitoring Oxygen Saturation Using Multichannel Optical Fibre Photoplethysmography.
    Ballaji HK; Correia R; Korposh S; Hayes-Gill BR; Hernandez FU; Salisbury B; Morgan SP
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Sparse Sampling Sensor Front-End IC for Low Power Continuous SpO
    Alamouti SF; Jan J; Yalcin C; Ting J; Arias AC; Muller R
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):997-1007. PubMed ID: 36417724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a Self-Powered ECG and PPG Sensing Wearable Device.
    Zhao L; Jia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6791-6794. PubMed ID: 34892667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling Continuous Wearable Reflectance Pulse Oximetry at the Sternum.
    Chan M; Ganti VG; Heller JA; Abdallah CA; Etemadi M; Inan OT
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare-A Review.
    Kazanskiy NL; Butt MA; Khonina SN
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmographic Time-Domain Heart Rate Measurement Algorithm for Resource-Constrained Wearable Devices and its Implementation.
    Wójcikowski M; Pankiewicz B
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32210210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opto-physiological modeling applied to photoplethysmographic cardiovascular assessment.
    Hu S; Azorin-Peris V; Zheng J
    J Healthc Eng; 2013; 4(4):505-28. PubMed ID: 24287429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the effect of melanin concentration on light-tissue interactions in transmittance and reflectance finger photoplethysmography.
    Al-Halawani R; Qassem M; Kyriacou PA
    Sci Rep; 2024 Apr; 14(1):8145. PubMed ID: 38584229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors.
    Andreozzi E; Sabbadini R; Centracchio J; Bifulco P; Irace A; Breglio G; Riccio M
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal quality measures for pulse oximetry through waveform morphology analysis.
    Sukor JA; Redmond SJ; Lovell NH
    Physiol Meas; 2011 Mar; 32(3):369-84. PubMed ID: 21330696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information?
    Lu S; Zhao H; Ju K; Shin K; Lee M; Shelley K; Chon KH
    J Clin Monit Comput; 2008 Feb; 22(1):23-9. PubMed ID: 17987395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of Wearable Photoplethysmography Sensors for Continuous Heart Rate Monitoring in Telehealth Applications.
    Vinatzer H; Rzepka A; Hayn D; Ziegl A; Edegger K; Prescher S; Schreier G
    Stud Health Technol Inform; 2022 May; 293():205-211. PubMed ID: 35592983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.