These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 35969565)
1. Stimulus-Stimulus Transfer Based on Time-Frequency-Joint Representation in SSVEP-Based BCIs. Wang Z; Wong CM; Rosa A; Qian T; Jung TP; Wan F IEEE Trans Biomed Eng; 2023 Feb; 70(2):603-615. PubMed ID: 35969565 [TBL] [Abstract][Full Text] [Related]
2. A Precise Frequency Recognition Method of Short-Time SSVEP Signals Based on Signal Extension. Li H; Xu G; Li Z; Zhang K; Zheng X; Du C; Han C; Kuang J; Du Y; Zhang S IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2486-2496. PubMed ID: 37155399 [TBL] [Abstract][Full Text] [Related]
3. Inter- and Intra-Subject Transfer Reduces Calibration Effort for High-Speed SSVEP-Based BCIs. Wong CM; Wang Z; Wang B; Lao KF; Rosa A; Xu P; Jung TP; Chen CLP; Wan F IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2123-2135. PubMed ID: 32841119 [TBL] [Abstract][Full Text] [Related]
4. Almost free of calibration for SSVEP-based brain-computer interfaces. Luo R; Xiao X; Chen E; Meng L; Jung TP; Xu M; Ming D J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37948768 [No Abstract] [Full Text] [Related]
5. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality. Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130 [No Abstract] [Full Text] [Related]
6. Multi-Stimulus Least-Squares Transformation With Online Adaptation Scheme to Reduce Calibration Effort for SSVEP-Based BCIs. Li D; Wang X; Dou M; Zhao Y; Cui X; Xiang J; Wang B IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1606-1615. PubMed ID: 38598403 [TBL] [Abstract][Full Text] [Related]
7. Cross-Subject Transfer Method Based on Domain Generalization for Facilitating Calibration of SSVEP-Based BCIs. Huang J; Zhang ZQ; Xiong B; Wang Q; Wan B; Li F; Yang P IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3307-3319. PubMed ID: 37578926 [TBL] [Abstract][Full Text] [Related]
8. Online Adaptation Boosts SSVEP-Based BCI Performance. Wong CM; Wang Z; Nakanishi M; Wang B; Rosa A; Chen CLP; Jung TP; Wan F IEEE Trans Biomed Eng; 2022 Jun; 69(6):2018-2028. PubMed ID: 34882542 [TBL] [Abstract][Full Text] [Related]
9. Enhancing SSVEP Identification With Less Individual Calibration Data Using Periodically Repeated Component Analysis. Ke Y; Liu S; Ming D IEEE Trans Biomed Eng; 2024 Apr; 71(4):1319-1331. PubMed ID: 37971909 [TBL] [Abstract][Full Text] [Related]
10. FB-EEGNet: A fusion neural network across multi-stimulus for SSVEP target detection. Yao H; Liu K; Deng X; Tang X; Yu H J Neurosci Methods; 2022 Sep; 379():109674. PubMed ID: 35842015 [TBL] [Abstract][Full Text] [Related]
11. Optimizing spatial properties of a new checkerboard-like visual stimulus for user-friendly SSVEP-based BCIs. Ming G; Pei W; Chen H; Gao X; Wang Y J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34544060 [No Abstract] [Full Text] [Related]
12. Phase-Locked Time-Shift Data Augmentation Method for SSVEP Brain-Computer Interfaces. Mai X; Ai J; Wei Y; Zhu X; Meng J IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4096-4105. PubMed ID: 37815966 [TBL] [Abstract][Full Text] [Related]
13. Learning across multi-stimulus enhances target recognition methods in SSVEP-based BCIs. Wong CM; Wan F; Wang B; Wang Z; Nan W; Lao KF; Mak PU; Vai MI; Rosa A J Neural Eng; 2020 Jan; 17(1):016026. PubMed ID: 31112937 [TBL] [Abstract][Full Text] [Related]
14. Implementing a calibration-free SSVEP-based BCI system with 160 targets. Chen Y; Yang C; Ye X; Chen X; Wang Y; Gao X J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34134091 [No Abstract] [Full Text] [Related]
15. A frequency recognition method based on multitaper spectral analysis and SNR estimation for SSVEP-based brain-computer interface. Chen Yang ; Xu Han ; Yijun Wang ; Xiaorong Gao Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1930-1933. PubMed ID: 29060270 [TBL] [Abstract][Full Text] [Related]
16. A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs. Ming G; Zhong H; Pei W; Gao X; Wang Y J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36827704 [No Abstract] [Full Text] [Related]
17. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI. Chang MH; Lee JS; Heo J; Park KS J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770 [TBL] [Abstract][Full Text] [Related]
18. Designing a Sum of Squared Correlations Framework for Enhancing SSVEP-Based BCIs. Kiran Kumar GR; Ramasubba Reddy M IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2044-2050. PubMed ID: 31536009 [TBL] [Abstract][Full Text] [Related]
19. Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA. Rabiul Islam M; Khademul Islam Molla M; Nakanishi M; Tanaka T J Neural Eng; 2017 Apr; 14(2):026007. PubMed ID: 28071599 [TBL] [Abstract][Full Text] [Related]
20. Incorporation of dynamic stopping strategy into the high-speed SSVEP-based BCIs. Jiang J; Yin E; Wang C; Xu M; Ming D J Neural Eng; 2018 Aug; 15(4):046025. PubMed ID: 29774867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]