BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35969637)

  • 1. Carbonic Anhydrase-Mimicking Supramolecular Nanoassemblies for Developing Carbon Capture Membranes.
    Nilouyal S; Karahan HE; Isfahani AP; Yamaguchi D; Gibbons AH; Ito MMM; Sivaniah E; Ghalei B
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37595-37607. PubMed ID: 35969637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonic anhydrase-mimetic bolaamphiphile self-assembly for CO2 hydration and sequestration.
    Kim MC; Lee SY
    Chemistry; 2014 Dec; 20(51):17019-24. PubMed ID: 25332095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrolytic conversion of carbon capture solutions containing carbonic anhydrase.
    Fink AG; Lees EW; Gingras J; Madore E; Fradette S; Jaffer SA; Goldman M; Dvorak DJ; Berlinguette CP
    J Inorg Biochem; 2022 Jun; 231():111782. PubMed ID: 35349862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electropolymerized carbonic anhydrase immobilization for carbon dioxide capture.
    Merle G; Fradette S; Madore E; Barralet JE
    Langmuir; 2014 Jun; 30(23):6915-9. PubMed ID: 24856780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate.
    Del Prete S; De Luca V; Capasso C; Supuran CT; Carginale V
    Bioorg Med Chem; 2016 Jan; 24(2):220-5. PubMed ID: 26712095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonic anhydrases in industrial applications.
    González JM; Fisher SZ
    Subcell Biochem; 2014; 75():405-26. PubMed ID: 24146390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neutron crystallographic studies of carbonic anhydrase.
    Combs JE; Andring JT; McKenna R
    Methods Enzymol; 2020; 634():281-309. PubMed ID: 32093837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonic anhydrase to boost CO
    de Oliveira Maciel A; Christakopoulos P; Rova U; Antonopoulou I
    Chemosphere; 2022 Jul; 299():134419. PubMed ID: 35364080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering HOF-Based Mixed-Matrix Membranes for Efficient CO
    Wang Y; Ren Y; Cao Y; Liang X; He G; Ma H; Dong H; Fang X; Pan F; Jiang Z
    Nanomicro Lett; 2023 Feb; 15(1):50. PubMed ID: 36787058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide transport by proteic and facilitated transport membranes.
    Trachtenberg MC; Tu CK; Landers RA; Willson RC; McGregor ML; Laipis PJ; Kennedy JF; Paterson M; Silverman DN; Thomas D; Smith RL; Rudolph FB
    Life Support Biosph Sci; 1999; 6(4):293-302. PubMed ID: 11543269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon dioxide capture using Escherichia coli expressing carbonic anhydrase in a foam bioreactor.
    Watson SK; Han Z; Su WW; Deshusses MA; Kan E
    Environ Technol; 2016 Dec; 37(24):3186-92. PubMed ID: 27109547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino Acid-Mediated Synthesis of the ZIF-8 Nanozyme That Reproduces Both the Zinc-Coordinated Active Center and Hydrophobic Pocket of Natural Carbonic Anhydrase.
    Sun S; Zhang Z; Xiang Y; Cao M; Yu D
    Langmuir; 2022 Feb; 38(4):1621-1630. PubMed ID: 35042338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbonic Anhydrase@ZIF-8 Hydrogel Composite Membrane with Improved Recycling and Stability for Efficient CO
    Ren S; Li C; Tan Z; Hou Y; Jia S; Cui J
    J Agric Food Chem; 2019 Mar; 67(12):3372-3379. PubMed ID: 30807136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO2 separation.
    Li P; Wang Z; Li W; Liu Y; Wang J; Wang S
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15481-93. PubMed ID: 26121208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer.
    Boone CD; Pinard M; McKenna R; Silverman D
    Subcell Biochem; 2014; 75():31-52. PubMed ID: 24146373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pebax
    Casadei R; Giacinti Baschetti M; Yoo MJ; Park HB; Giorgini L
    Membranes (Basel); 2020 Aug; 10(8):. PubMed ID: 32824239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Dioxide-Controlled Assembly of Water-Soluble Conjugated Polymers Catalyzed by Carbonic Anhydrase.
    Yuan H; Xing C; Fan Y; Chai R; Niu R; Zhan Y; Peng F; Qi J
    Macromol Rapid Commun; 2017 Mar; 38(5):. PubMed ID: 28117511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development.
    Min KH; Son RG; Ki MR; Choi YS; Pack SP
    Chemosphere; 2016 Jan; 143():128-34. PubMed ID: 26206748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite.
    Nielsen PM; Fago A
    J Inorg Biochem; 2015 Aug; 149():6-11. PubMed ID: 25951615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1.
    Kim S; Sung J; Yeon J; Choi SH; Jin MS
    Mol Cells; 2019 Jun; 42(6):460-469. PubMed ID: 31250619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.