These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 35969791)

  • 41. A new chemical probe for quantitative proteomic profiling of fibroblast growth factor receptor and its inhibitors.
    Ku X; Heinzlmeir S; Liu X; Médard G; Kuster B
    J Proteomics; 2014 Jan; 96():44-55. PubMed ID: 24184958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Small molecule target identification using photo-affinity chromatography.
    Seo SY; Corson TW
    Methods Enzymol; 2019; 622():347-374. PubMed ID: 31155061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.
    Piazza I; Beaton N; Bruderer R; Knobloch T; Barbisan C; Chandat L; Sudau A; Siepe I; Rinner O; de Souza N; Picotti P; Reiter L
    Nat Commun; 2020 Aug; 11(1):4200. PubMed ID: 32826910
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Proteomics: technologies for protein analysis.
    Gomase VS; Kale KV; Tagore S; Hatture SR
    Curr Drug Metab; 2008 Mar; 9(3):213-20. PubMed ID: 18336224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid profiling of protein kinase inhibitors by quantitative proteomics.
    Golkowski M; Brigham JL; Perera GK; Romano GE; Maly DJ; Ong SE
    Medchemcomm; 2014 Mar; 5(3):363-369. PubMed ID: 24648882
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advances in Ultrahigh Throughput Hit Discovery with Tandem Mass Spectrometry Encoded Libraries.
    Mata JM; van der Nol E; Pomplun SJ
    J Am Chem Soc; 2023 Aug; 145(34):19129-19139. PubMed ID: 37556835
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical proteomics in drug discovery.
    Drewes G
    Methods Mol Biol; 2012; 803():15-21. PubMed ID: 22065215
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mass spectrometry methods to study protein-metabolite interactions.
    Guo H; Peng H; Emili A
    Expert Opin Drug Discov; 2017 Dec; 12(12):1271-1280. PubMed ID: 28933205
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The proteomics big challenge for biomarkers and new drug-targets discovery.
    Savino R; Paduano S; Preianò M; Terracciano R
    Int J Mol Sci; 2012 Oct; 13(11):13926-48. PubMed ID: 23203042
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Target identification of small molecules based on chemical biology approaches.
    Futamura Y; Muroi M; Osada H
    Mol Biosyst; 2013 May; 9(5):897-914. PubMed ID: 23354001
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery.
    Berger AB; Vitorino PM; Bogyo M
    Am J Pharmacogenomics; 2004; 4(6):371-81. PubMed ID: 15651898
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studying epigenetic complexes and their inhibitors with the proteomics toolbox.
    Weigt D; Hopf C; Médard G
    Clin Epigenetics; 2016; 8():76. PubMed ID: 27437033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chemical proteomics approaches for identifying the cellular targets of natural products.
    Wright MH; Sieber SA
    Nat Prod Rep; 2016 May; 33(5):681-708. PubMed ID: 27098809
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Drug Target Identification Using an iTRAQ-Based Quantitative Chemical Proteomics Approach-Based on a Target Profiling Study of Andrographolide.
    Wang J; Wong YK; Zhang J; Lee YM; Hua ZC; Shen HM; Lin Q
    Methods Enzymol; 2017; 586():291-309. PubMed ID: 28137568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Streamlined Target Deconvolution Approach Utilizing a Single Photoreactive Chloroalkane Capture Tag.
    Friedman Ohana R; Levin S; Hurst R; Rosenblatt MM; Zimmerman K; Machleidt T; Wood KV; Kirkland TA
    ACS Chem Biol; 2021 Feb; 16(2):404-413. PubMed ID: 33543920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors.
    Alvarez-Curto E; Pediani JD; Milligan G
    Anal Bioanal Chem; 2010 Sep; 398(1):167-80. PubMed ID: 20517598
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epigenetic drug target deconvolution by mass spectrometry-based technologies.
    Noberini R; Bonaldi T
    Nat Struct Mol Biol; 2019 Oct; 26(10):854-857. PubMed ID: 31582842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of direct protein targets of small molecules.
    Lomenick B; Olsen RW; Huang J
    ACS Chem Biol; 2011 Jan; 6(1):34-46. PubMed ID: 21077692
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chemical Proteomics with Novel Fully Functionalized Fragments and Stringent Target Prioritization Identifies the Glutathione-Dependent Isomerase GSTZ1 as a Lung Cancer Target.
    Liao Y; Chin Chan S; Welsh EA; Fang B; Sun L; Schönbrunn E; Koomen JM; Duckett DR; Haura EB; Monastyrskyi A; Rix U
    ACS Chem Biol; 2023 Feb; 18(2):251-264. PubMed ID: 36630201
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.