BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35969868)

  • 1. Band Structure Engineering within Two-Dimensional Borocarbonitride Nanosheets for Surface-Enhanced Raman Scattering.
    Liang C; Lu ZA; Zheng M; Chen M; Zhang Y; Zhang B; Zhang J; Xu P
    Nano Lett; 2022 Aug; 22(16):6590-6598. PubMed ID: 35969868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selenium Vacancies and Synergistic Effect of Near- and Far-Field-Enabled Ultrasensitive Surface-Enhanced Raman-Scattering-Active Substrates for Malaria Detection.
    Xu G; Dong R; Gu D; Tian H; Xiong L; Wang Z; Wang W; Shao Y; Li W; Li G; Zheng X; Yu Y; Feng Y; Dong Y; Zhong G; Zhang B; Li W; Wei L; Yang C; Chen M
    J Phys Chem Lett; 2022 Feb; 13(6):1453-1463. PubMed ID: 35129342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.
    Lombardi JR; Birke RL
    J Chem Phys; 2007 Jun; 126(24):244709. PubMed ID: 17614579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2D GaN for Highly Reproducible Surface Enhanced Raman Scattering.
    Zhao S; Wang H; Niu L; Xiong W; Chen Y; Zeng M; Yuan S; Fu L
    Small; 2021 Nov; 17(45):e2103442. PubMed ID: 34569140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A unified view of surface-enhanced Raman scattering.
    Lombardi JR; Birke RL
    Acc Chem Res; 2009 Jun; 42(6):734-42. PubMed ID: 19361212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-Dimensional Amorphous TiO
    Wang X; Shi W; Wang S; Zhao H; Lin J; Yang Z; Chen M; Guo L
    J Am Chem Soc; 2019 Apr; 141(14):5856-5862. PubMed ID: 30895783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding Metal-Semiconductor Plasmonic Resonance Coupling through Surface-Enhanced Raman Scattering.
    Zhu L; Meng Z; Hu S; Zhao T; Zhao B
    ACS Appl Mater Interfaces; 2023 May; 15(18):22730-22736. PubMed ID: 37125659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanographene oxide-TiO
    Papadakis D; Diamantopoulou A; Pantazopoulos PA; Palles D; Sakellis E; Boukos N; Stefanou N; Likodimos V
    Nanoscale; 2019 Nov; 11(44):21542-21553. PubMed ID: 31687726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional MBenes with ordered metal vacancies for surface-enhanced Raman scattering.
    Lan L; Fan X; Zhao C; Gao J; Qu Z; Song W; Yao H; Li M; Qiu T
    Nanoscale; 2023 Feb; 15(6):2779-2787. PubMed ID: 36661187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low temperature-boosted high efficiency photo-induced charge transfer for remarkable SERS activity of ZnO nanosheets.
    Lin J; Yu J; Akakuru OU; Wang X; Yuan B; Chen T; Guo L; Wu A
    Chem Sci; 2020 Aug; 11(35):9414-9420. PubMed ID: 34094207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive surface-enhanced Raman scattering of TiO
    Zhao X; Zhang W; Peng C; Liang Y; Wang W
    J Colloid Interface Sci; 2017 Dec; 507():370-377. PubMed ID: 28806656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon-Induced Charge Transfer-Enhanced Raman Scattering on a Semiconductor: Toward Amplification-Free Quantification of SARS-CoV-2.
    Feng E; Zheng T; He X; Chen J; Gu Q; He X; Hu F; Li J; Tian Y
    Angew Chem Int Ed Engl; 2023 Sep; 62(38):e202309249. PubMed ID: 37555368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A flexible semiconductor SERS substrate by in situ growth of tightly aligned TiO
    Li K; Jiang H; Wang L; Wang R; Zhang X; Yang L; Jiang X; Song W; Zhao B
    Mikrochim Acta; 2024 Jan; 191(2):113. PubMed ID: 38286863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular and Metal-to-Molecule Charge Transfer Electronic Resonances in the Surface-Enhanced Raman Scattering of 1,4-Bis((
    López-Tocón I; Imbarack E; Soto J; Sanchez-Cortes S; Leyton P; Otero JC
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31861152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants.
    Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y
    ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The theory of surface-enhanced Raman scattering.
    Lombardi JR; Birke RL
    J Chem Phys; 2012 Apr; 136(14):144704. PubMed ID: 22502540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-Transfer Resonance and Surface Defect-Dominated WO
    Jiang L; Hu Y; Zhang H; Luo X; Yuan R; Yang X
    Anal Chem; 2022 May; 94(19):6967-6975. PubMed ID: 35289177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Two-Dimensional Nanostructures: Surface Defects for Morphology-Driven Enhanced Semiconductor SERS.
    Song G; Gong W; Cong S; Zhao Z
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5505-5511. PubMed ID: 33258164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SERS enhancement induced by the Se vacancy defects in ultra-thin hybrid phase SnSe
    Chen C; Zhang W; Duan P; Liu W; Shafi M; Hu X; Zhang C; Zhang C; Man B; Liu M
    Opt Express; 2022 Oct; 30(21):37795-37814. PubMed ID: 36258361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.