These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 3596993)

  • 1. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses.
    Bessems GJ; Keizer E; Wollensak J; Hoenders HJ
    Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins.
    Kodama T; Wong R; Takemoto L
    Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of water-insoluble proteins in normal and cataractous human lens.
    Kamei A
    Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract].
    Zhao HR; Hu SQ; Ren XH
    Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM).
    Ashida Y; Takeda T; Hosokawa M
    Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M
    Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of hyperbaric oxygen on the crystallins of cultured rabbit lenses: a possible catalytic role for copper.
    Padgaonkar VA; Leverenz VR; Fowler KE; Reddy VN; Giblin FJ
    Exp Eye Res; 2000 Oct; 71(4):371-83. PubMed ID: 10995558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitation of high molecular weight protein aggregates in opaque and transparent parts from the same human cataractous lens.
    Kodama T; Wolfe J; Chylack L; Smith J; Takemoto L
    Jpn J Ophthalmol; 1989; 33(1):114-9. PubMed ID: 2733253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular evidence for the involvement of alpha crystallin in the colouration/crosslinking of crystallins in age-related nuclear cataract.
    Chen YC; Reid GE; Simpson RJ; Truscott RJ
    Exp Eye Res; 1997 Dec; 65(6):835-40. PubMed ID: 9441707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of disulfide-linked crystallins associated with human cataractous lens membranes.
    Kodama T; Takemoto L
    Invest Ophthalmol Vis Sci; 1988 Jan; 29(1):145-9. PubMed ID: 3335427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitation of membrane-associated crystallins from aging and cataractous human lenses.
    Takehana M; Takemoto L
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):780-4. PubMed ID: 3570688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of alphaA-crystallin from high molecular weight aggregates in the normal human lens.
    Fujii N; Awakura M; Takemoto L; Inomata M; Takata T; Fujii N; Saito T
    Mol Vis; 2003 Jul; 9():315-22. PubMed ID: 12847419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on human gamma-crystallins. I. Quantitative changes with age and cataract formation].
    Wu K; Li S; Pan S; Liang S; Cao X
    Yan Ke Xue Bao; 1992 Jun; 8(2):68-72. PubMed ID: 1299602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.