These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3597007)

  • 21. Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study.
    Soustiel JF; Levy E; Bibi R; Lukaschuk S; Manor D
    Stroke; 2001 Mar; 32(3):629-35. PubMed ID: 11239178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [In vitro evaluation of the intravasal Doppler guide wire: determination of hemodynamic effects of stenoses in a flow model].
    Hoppe M; Wagner HJ; Kunisch M; Froelich JJ; Klose KJ
    Rofo; 1997 Jun; 166(6):544-9. PubMed ID: 9273009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pressure-based simultaneous CFR and FFR measurements: understanding the physiology of a stenosed vessel.
    Shalman E; Barak C; Dgany E; Noskowitcz H; Einav S; Rosenfeld M
    Comput Biol Med; 2001 Sep; 31(5):353-63. PubMed ID: 11535201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer simulation of blood flow patterns in arteries of various geometries.
    Wong PK; Johnston KW; Ethier CR; Cobbold RS
    J Vasc Surg; 1991 Nov; 14(5):658-67. PubMed ID: 1942375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An improved reduced-order model for pressure drop across arterial stenoses.
    Lyras KG; Lee J
    PLoS One; 2021; 16(10):e0258047. PubMed ID: 34597313
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical investigation of blood flow in the arterial stenosis.
    Bernad SI; Bernad E; Mihalas GI
    Stud Health Technol Inform; 2003; 95():3-8. PubMed ID: 14663954
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment of Reynolds stress components and turbulent pressure loss using 4D flow MRI with extended motion encoding.
    Haraldsson H; Kefayati S; Ahn S; Dyverfeldt P; Lantz J; Karlsson M; Laub G; Ebbers T; Saloner D
    Magn Reson Med; 2018 Apr; 79(4):1962-1971. PubMed ID: 28745409
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element simulation of pulsatile flow through arterial stenosis.
    Tu C; Deville M; Dheur L; Vanderschuren L
    J Biomech; 1992 Oct; 25(10):1141-52. PubMed ID: 1400514
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A model for blood flow through a stenotic tube.
    Tandon PN; Rana UV; Kawahara M; Katiyar VK
    Int J Biomed Comput; 1993 Jan; 32(1):61-78. PubMed ID: 8425753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study.
    Banerjee RK; Ashtekar KD; Helmy TA; Effat MA; Back LH; Khoury SF
    Biomed Eng Online; 2008 Aug; 7():24. PubMed ID: 18752683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pulsatile flow of non-Newtonian blood fluid inside stenosed arteries: Investigating the effects of viscoelastic and elastic walls, arteriosclerosis, and polycythemia diseases.
    Nejad AA; Talebi Z; Cheraghali D; Shahbani-Zahiri A; Norouzi M
    Comput Methods Programs Biomed; 2018 Feb; 154():109-122. PubMed ID: 29249336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental analysis of the influence of stenotic geometry on steady flow.
    Liepsch D; Singh M; Lee M
    Biorheology; 1992; 29(4):419-31. PubMed ID: 1306368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The area of the pressure-flow loop for assessment of arterial stenosis: a new index.
    Ovadia-Blechman Z; Einav S; Zaretsky U; Castel D; Toledo E; Eldar M
    Technol Health Care; 2002; 10(1):39-56. PubMed ID: 11847447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pulsatile spiral blood flow through arterial stenosis.
    Linge F; Hye MA; Paul MC
    Comput Methods Biomech Biomed Engin; 2014 Nov; 17(15):1727-37. PubMed ID: 23477498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hemodynamics of arterial stenoses at elevated flow rates.
    Young DF; Cholvin NR; Kirkeeide RL; Roth AC
    Circ Res; 1977 Jul; 41(1):99-107. PubMed ID: 862148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sources of error in intra-arterial pressure measurements across a stenosis.
    McWilliams RG; Robertson I; Smye SW; Wijesinghe L; Kessel D
    Eur J Vasc Endovasc Surg; 1998 Jun; 15(6):535-40. PubMed ID: 9659891
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significance of Hall currents on hybrid nano-blood flow through an inclined artery having mild stenosis: Homotopy perturbation approach.
    Das S; Pal TK; Jana RN; Giri B
    Microvasc Res; 2021 Sep; 137():104192. PubMed ID: 34081994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Computational Fluid Dynamics Analyses on Hemodynamic Characteristics in Stenosed Arterial Models.
    Zhou Y; Lee C; Wang J
    J Healthc Eng; 2018; 2018():4312415. PubMed ID: 29732048
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiple subcritical arterial stenoses: effect on poststenotic pressure and flow.
    Flanigan DP; Tullis JP; Streeter VL; Whitehouse WM; Fry WJ; Stanley JC
    Ann Surg; 1977 Nov; 186(5):663-8. PubMed ID: 921360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.