BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 35970146)

  • 1. Non-invasive stimulation with temporal interference: optimization of the electric field deep in the brain with the use of a genetic algorithm.
    Stoupis D; Samaras T
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35970146
    [No Abstract]   [Full Text] [Related]  

  • 2. Optimization of focality and direction in dense electrode array transcranial direct current stimulation (tDCS).
    Guler S; Dannhauer M; Erem B; Macleod R; Tucker D; Turovets S; Luu P; Erdogmus D; Brooks DH
    J Neural Eng; 2016 Jun; 13(3):036020. PubMed ID: 27152752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized multi-electrode stimulation increases focality and intensity at target.
    Dmochowski JP; Datta A; Bikson M; Su Y; Parra LC
    J Neural Eng; 2011 Aug; 8(4):046011. PubMed ID: 21659696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feasibility of epidural temporal interference stimulation for minimally invasive electrical deep brain stimulation: simulation and phantom experimental studies.
    Lee S; Park J; Choi DS; Lim S; Kwak Y; Jang DP; Kim DH; Ji HB; Choy YB; Im CH
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36066021
    [No Abstract]   [Full Text] [Related]  

  • 5. Individually customized transcranial temporal interference stimulation for focused modulation of deep brain structures: a simulation study with different head models.
    Lee S; Lee C; Park J; Im CH
    Sci Rep; 2020 Jul; 10(1):11730. PubMed ID: 32678264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvements on spatial coverage and focality of deep brain stimulation in pre-surgical epilepsy mapping.
    Collavini S; Fernández-Corazza M; Oddo S; Princich JP; Kochen S; Muravchik CH
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33578398
    [No Abstract]   [Full Text] [Related]  

  • 7. Constrained maximum intensity optimized multi-electrode tDCS targeting of human somatosensory network.
    Khan A; Haueisen J; Wolters CH; Antonakakis M; Vogenauer N; Wollbrink A; Suntrup-Krueger S; Schneider TR; Herrmann CS; Nitsche M; Paulus W
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5894-5897. PubMed ID: 31947191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing the electric field strength in multiple targets for multichannel transcranial electric stimulation.
    Saturnino GB; Madsen KH; Thielscher A
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33181504
    [No Abstract]   [Full Text] [Related]  

  • 9. Prospects for transcranial temporal interference stimulation in humans: A computational study.
    Rampersad S; Roig-Solvas B; Yarossi M; Kulkarni PP; Santarnecchi E; Dorval AD; Brooks DH
    Neuroimage; 2019 Nov; 202():116124. PubMed ID: 31473351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can transcranial electric stimulation with multiple electrodes reach deep targets?
    Huang Y; Parra LC
    Brain Stimul; 2019; 12(1):30-40. PubMed ID: 30297323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of interferential stimulation of the human brain with electrode arrays.
    Huang Y; Datta A; Parra LC
    J Neural Eng; 2020 Jun; 17(3):036023. PubMed ID: 32403096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple method for EEG guided transcranial electrical stimulation without models.
    Cancelli A; Cottone C; Tecchio F; Truong DQ; Dmochowski J; Bikson M
    J Neural Eng; 2016 Jun; 13(3):036022. PubMed ID: 27172063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study on the optimization of transcranial temporal interfering stimulation with high-definition electrodes using unsupervised neural networks.
    Bahn S; Lee C; Kang BY
    Hum Brain Mapp; 2023 Apr; 44(5):1829-1845. PubMed ID: 36527707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications.
    Soleimani G; Kupliki R; Bodurka J; Paulus MP; Ekhtiari H
    Brain Stimul; 2022; 15(2):337-351. PubMed ID: 35042056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of multi-electrode implant configurations and programming for the delivery of non-ablative electric fields in intratumoral modulation therapy.
    Iredale E; Deweyert A; Hoover DA; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2020 Nov; 47(11):5441-5454. PubMed ID: 32978963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unification of optimal targeting methods in transcranial electrical stimulation.
    Fernández-Corazza M; Turovets S; Muravchik CH
    Neuroimage; 2020 Apr; 209():116403. PubMed ID: 31862525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation of cerebrospinal fluid in specific regions regulates focality in transcranial direct current stimulation.
    Kashyap R; Bhattacharjee S; Bharath RD; Venkatasubramanian G; Udupa K; Bashir S; Oishi K; Desmond JE; Chen SHA; Guan C
    Front Hum Neurosci; 2022; 16():952602. PubMed ID: 36118967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-objective optimization via evolutionary algorithm (MOVEA) for high-definition transcranial electrical stimulation of the human brain.
    Wang M; Lou K; Liu Z; Wei P; Liu Q
    Neuroimage; 2023 Oct; 280():120331. PubMed ID: 37604295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS).
    von Conta J; Kasten FH; Ćurčić-Blake B; Aleman A; Thielscher A; Herrmann CS
    Sci Rep; 2021 Oct; 11(1):20357. PubMed ID: 34645895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS).
    Alam M; Truong DQ; Khadka N; Bikson M
    Phys Med Biol; 2016 Jun; 61(12):4506-21. PubMed ID: 27223853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.