BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35970146)

  • 21. An Operational Approach for Optimizing Transcranial Direct Current Stimulation.
    Xie X; Wang M; Qin L; Pan Y; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082713
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comprehensive analysis of the impact of head model extent on electric field predictions in transcranial current stimulation.
    Callejón-Leblic MA; Miranda PC
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33647895
    [No Abstract]   [Full Text] [Related]  

  • 23. [Research progress on transcranial electrical stimulation for deep brain stimulation].
    Meng W; Zhang C; Wu C; Zhang G; Huo X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):1005-1011. PubMed ID: 37879931
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The electric field distributions in anatomical head models during transcranial direct current stimulation for post-stroke rehabilitation.
    Manoli Z; Parazzini M; Ravazzani P; Samaras T
    Med Phys; 2017 Jan; 44(1):262-271. PubMed ID: 28044315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the importance of electrode parameters for shaping electric field patterns generated by tDCS.
    Saturnino GB; Antunes A; Thielscher A
    Neuroimage; 2015 Oct; 120():25-35. PubMed ID: 26142274
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle swarm optimization for programming deep brain stimulation arrays.
    Peña E; Zhang S; Deyo S; Xiao Y; Johnson MD
    J Neural Eng; 2017 Feb; 14(1):016014. PubMed ID: 28068291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated methodology for optimal selection of minimum electrode subsets for accurate EEG source estimation based on Genetic Algorithm optimization.
    Soler A; Moctezuma LA; Giraldo E; Molinas M
    Sci Rep; 2022 Jul; 12(1):11221. PubMed ID: 35780173
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel technique for accurate electrode placement over cortical targets for transcranial electrical stimulation (tES) clinical trials.
    Jog M; Anderson C; Kim E; Garrett A; Kubicki A; Gonzalez S; Jann K; Iacoboni M; Woods R; Wang DJ; Narr KL
    J Neural Eng; 2021 Oct; 18(5):. PubMed ID: 34555822
    [No Abstract]   [Full Text] [Related]  

  • 29. Putting focus on transcranial direct current stimulation in language production studies.
    Klaus J; Schutter DJLG
    PLoS One; 2018; 13(8):e0202730. PubMed ID: 30138361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control.
    Iredale E; Voigt B; Rankin A; Kim KW; Chen JZ; Schmid S; Hebb MO; Peters TM; Wong E
    Med Phys; 2022 Sep; 49(9):6055-6067. PubMed ID: 35754362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computationally optimized ECoG stimulation with local safety constraints.
    Guler S; Dannhauer M; Roig-Solvas B; Gkogkidis A; Macleod R; Ball T; Ojemann JG; Brooks DH
    Neuroimage; 2018 Jun; 173():35-48. PubMed ID: 29427847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcranial direct current stimulation in patients after decompressive craniectomy: a finite element model to investigate factors affecting the cortical electric field.
    Sun W; Dong X; Yu G; Shuai L; Yuan Y; Ma C
    J Int Med Res; 2021 Feb; 49(2):300060520942112. PubMed ID: 33788619
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TAP: targeting and analysis pipeline for optimization and verification of coil placement in transcranial magnetic stimulation.
    Dannhauer M; Huang Z; Beynel L; Wood E; Bukhari-Parlakturk N; Peterchev AV
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35377345
    [No Abstract]   [Full Text] [Related]  

  • 34. Population-level insights into temporal interference for focused deep brain neuromodulation.
    Yatsuda K; Yu W; Gomez-Tames J
    Front Hum Neurosci; 2024; 18():1308549. PubMed ID: 38708141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of montages and electric currents in tDCS.
    Khorrampanah M; Seyedarabi H; Daneshvar S; Farhoudi M
    Comput Biol Med; 2020 Oct; 125():103998. PubMed ID: 33039799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Optimization Approach for Transcranial Direct Current Stimulation Using Nondominated Sorting Genetic Algorithm II.
    Zhu S; Wang M; Ma M; Guan H; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4337-4340. PubMed ID: 34892181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Individually optimized multi-channel tDCS for targeting somatosensory cortex.
    Khan A; Antonakakis M; Vogenauer N; Haueisen J; Wolters CH
    Clin Neurophysiol; 2022 Feb; 134():9-26. PubMed ID: 34923283
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrode montage-dependent intracranial variability in electric fields induced by cerebellar transcranial direct current stimulation.
    Klaus J; Schutter DJLG
    Sci Rep; 2021 Nov; 11(1):22183. PubMed ID: 34773062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of uncertain head tissue conductivity in the optimization of transcranial direct current stimulation for an auditory target.
    Schmidt C; Wagner S; Burger M; Rienen Uv; Wolters CH
    J Neural Eng; 2015 Aug; 12(4):046028. PubMed ID: 26170066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.
    Huang Y; Parra LC; Haufe S
    Neuroimage; 2016 Oct; 140():150-62. PubMed ID: 26706450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.