These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 35970313)
41. Investigation into the anti-inflammatory mechanism of Pothos chinensis (Raf.) Merr. By regulating TLR4/MyD88/NF-κB pathway: Integrated network pharmacology, serum pharmacochemistry, and metabolomics. Xiao G; Yang M; Zeng Z; Tang R; Jiang J; Wu G; Xie C; Jia D; Bi X J Ethnopharmacol; 2024 Nov; 334():118520. PubMed ID: 38964626 [TBL] [Abstract][Full Text] [Related]
42. Lipopolysaccharide induced LOX-1 expression via TLR4/MyD88/ROS activated p38MAPK-NF-κB pathway. Zhao W; Ma G; Chen X Vascul Pharmacol; 2014 Dec; 63(3):162-72. PubMed ID: 25135647 [TBL] [Abstract][Full Text] [Related]
43. Zerumbone suppresses the activation of inflammatory mediators in LPS-stimulated U937 macrophages through MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways. Haque MA; Jantan I; Harikrishnan H Int Immunopharmacol; 2018 Feb; 55():312-322. PubMed ID: 29310107 [TBL] [Abstract][Full Text] [Related]
44. HOTAIR alleviates ox-LDL-induced inflammatory response in Raw264.7 cells via inhibiting NF-κB pathway. Pang JL; Wang JW; Hu PY; Jiang JS; Yu C Eur Rev Med Pharmacol Sci; 2018 Oct; 22(20):6991-6998. PubMed ID: 30402866 [TBL] [Abstract][Full Text] [Related]
45. Leonurine attenuates OVA-induced asthma via p38 MAPK/NF-κB signaling pathway. Bai D; Sun Y; Li Q; Li H; Liang Y; Xu X; Hao J Int Immunopharmacol; 2023 Jan; 114():109483. PubMed ID: 36463697 [TBL] [Abstract][Full Text] [Related]
46. Penta-O-galloyl-β-D-glucose ameliorates inflammation by inhibiting MyD88/NF-κB and MyD88/MAPK signalling pathways. Jang SE; Hyam SR; Jeong JJ; Han MJ; Kim DH Br J Pharmacol; 2013 Nov; 170(5):1078-91. PubMed ID: 23941302 [TBL] [Abstract][Full Text] [Related]
47. Gallic Acid-g-Chitosan Modulates Inflammatory Responses in LPS-Stimulated RAW264.7 Cells Via NF-κB, AP-1, and MAPK Pathways. Ahn CB; Jung WK; Park SJ; Kim YT; Kim WS; Je JY Inflammation; 2016 Feb; 39(1):366-374. PubMed ID: 26412258 [TBL] [Abstract][Full Text] [Related]
48. Recombinant CC16 protein inhibits the production of pro-inflammatory cytokines via NF-κB and p38 MAPK pathways in LPS-activated RAW264.7 macrophages. Pang M; Yuan Y; Wang D; Li T; Wang D; Shi X; Guo M; Wang C; Zhang X; Zheng G; Yu B; Wang H Acta Biochim Biophys Sin (Shanghai); 2017 May; 49(5):435-443. PubMed ID: 28338974 [TBL] [Abstract][Full Text] [Related]
49. Standardized extract of Zingiber zerumbet suppresses LPS-induced pro-inflammatory responses through NF-κB, MAPK and PI3K-Akt signaling pathways in U937 macrophages. Haque MA; Jantan I; Harikrishnan H; Ghazalee S Phytomedicine; 2019 Feb; 54():195-205. PubMed ID: 30668369 [TBL] [Abstract][Full Text] [Related]
50. Anti-Inflammatory Activity of Tanshinone IIA in LPS-Stimulated RAW264.7 Macrophages via miRNAs and TLR4-NF-κB Pathway. Fan G; Jiang X; Wu X; Fordjour PA; Miao L; Zhang H; Zhu Y; Gao X Inflammation; 2016 Feb; 39(1):375-384. PubMed ID: 26639663 [TBL] [Abstract][Full Text] [Related]
51. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. Hu N; Wang C; Dai X; Zhou M; Gong L; Yu L; Peng C; Li Y J Ethnopharmacol; 2020 Feb; 248():112361. PubMed ID: 31683033 [TBL] [Abstract][Full Text] [Related]
52. Sparassis crispa exerts anti-inflammatory activity via suppression of TLR-mediated NF-κB and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. Han JM; Lee EK; Gong SY; Sohng JK; Kang YJ; Jung HJ J Ethnopharmacol; 2019 Mar; 231():10-18. PubMed ID: 30395976 [TBL] [Abstract][Full Text] [Related]
53. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways. Yu Q; Zeng K; Ma X; Song F; Jiang Y; Tu P; Wang X Int Immunopharmacol; 2016 Sep; 38():104-14. PubMed ID: 27261558 [TBL] [Abstract][Full Text] [Related]
54. Cryptotanshinone from Li XX; Zheng X; Liu Z; Xu Q; Tang H; Feng J; Yang S; Vong CT; Gao H; Wang Y Chin Med; 2020; 15():20. PubMed ID: 32158495 [TBL] [Abstract][Full Text] [Related]
55. [Anti-inflammatory effect and its mechanism of Saracae Cortex based on zebrafish model and network pharmacology]. Chen LY; Wu CM; Liang P; Wei JF; Lan TT; Guo M; Li YH; Ru M Zhongguo Zhong Yao Za Zhi; 2024 Jun; 49(11):3070-3080. PubMed ID: 39041167 [TBL] [Abstract][Full Text] [Related]
56. Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Shih JH; Tsai YF; Li IH; Chen MH; Huang YS Mar Drugs; 2020 Sep; 18(10):. PubMed ID: 33003399 [TBL] [Abstract][Full Text] [Related]
57. Low-density lipoprotein modified by macrophage-derived lysosomal hydrolases induces expression and secretion of IL-8 via p38 MAPK and NF-kappaB by human monocyte-derived macrophages. Hakala JK; Lindstedt KA; Kovanen PT; Pentikäinen MO Arterioscler Thromb Vasc Biol; 2006 Nov; 26(11):2504-9. PubMed ID: 16973972 [TBL] [Abstract][Full Text] [Related]
58. Quzhou Fructus Aurantii Extract suppresses inflammation via regulation of MAPK, NF-κB, and AMPK signaling pathway. Li L; Chen J; Lin L; Pan G; Zhang S; Chen H; Zhang M; Xuan Y; Wang Y; You Z Sci Rep; 2020 Jan; 10(1):1593. PubMed ID: 32005962 [TBL] [Abstract][Full Text] [Related]
59. Cerevisterol Alleviates Inflammation via Suppression of MAPK/NF-κB/AP-1 and Activation of the Nrf2/HO-1 Signaling Cascade. Alam MB; Chowdhury NS; Sohrab MH; Rana MS; Hasan CM; Lee SH Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013140 [TBL] [Abstract][Full Text] [Related]
60. Chebulanin exerts its anti-inflammatory and anti-arthritic effects via inhibiting NF-κB and MAPK activation in collagen-induced arthritis mice. Liu F; Liu Y; Zhan S; Lv J; Sun F; Weng B; Liu S; Xia P Int Immunopharmacol; 2020 Nov; 88():106823. PubMed ID: 32795901 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]