These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 35970483)

  • 1. Enzyme-manipulated hydrogelation of small molecules for biomedical applications.
    Cheng C; Sun Q; Wang X; He B; Jiang T
    Acta Biomater; 2022 Oct; 151():88-105. PubMed ID: 35970483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic hydrogelation of small molecules.
    Yang Z; Liang G; Xu B
    Acc Chem Res; 2008 Feb; 41(2):315-26. PubMed ID: 18205323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Horseradish Peroxidase Catalyzed Hydrogelation for Biomedical, Biopharmaceutical, and Biofabrication Applications.
    Sakai S; Nakahata M
    Chem Asian J; 2017 Dec; 12(24):3098-3109. PubMed ID: 29044983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme-instructed self-assembly of peptide derivatives to form nanofibers and hydrogels.
    Gao Y; Yang Z; Kuang Y; Ma ML; Li J; Zhao F; Xu B
    Biopolymers; 2010; 94(1):19-31. PubMed ID: 20091873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first CD73-instructed supramolecular hydrogel.
    Wu D; Du X; Shi J; Zhou J; Zhou N; Xu B
    J Colloid Interface Sci; 2015 Jun; 447():269-72. PubMed ID: 25524006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-instructed self-assembly (EISA) assists the self-assembly and hydrogelation of hydrophobic peptides.
    Li X; Wang Y; Zhang Y; Yang Z; Gao J; Shi Y
    J Mater Chem B; 2022 May; 10(17):3242-3247. PubMed ID: 35437539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation.
    Wang X; Wang Q
    Acc Chem Res; 2021 Mar; 54(5):1274-1287. PubMed ID: 33570397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation Mechanism and Biomedical Applications of Protease-Manipulated Peptide Assemblies.
    Jiang T; Liu C; Xu X; He B; Mo R
    Front Bioeng Biotechnol; 2021; 9():598050. PubMed ID: 33718335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides.
    Gao J; Zhan J; Yang Z
    Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels.
    Shy AN; Li J; Shi J; Zhou N; Xu B
    J Drug Target; 2020; 28(7-8):760-765. PubMed ID: 32668995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials via peptide assembly: Design, characterization, and application in tissue engineering.
    Gray VP; Amelung CD; Duti IJ; Laudermilch EG; Letteri RA; Lampe KJ
    Acta Biomater; 2022 Mar; 140():43-75. PubMed ID: 34710626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofiber-Based Hydrogels: Controllable Synthesis and Multifunctional Applications.
    Fu Q; Duan C; Yan Z; Li Y; Si Y; Liu L; Yu J; Ding B
    Macromol Rapid Commun; 2018 May; 39(10):e1800058. PubMed ID: 29656568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzyme-Instructed Self-Assembly of Peptides Containing Phosphoserine to Form Supramolecular Hydrogels as Potential Soft Biomaterials.
    Zhou J; Du X; Wang J; Yamagata N; Xu B
    Front Chem Sci Eng; 2017 Dec; 11(4):509-515. PubMed ID: 29403673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light manipulation for fabrication of hydrogels and their biological applications.
    Peng K; Zheng L; Zhou T; Zhang C; Li H
    Acta Biomater; 2022 Jan; 137():20-43. PubMed ID: 34637933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polypeptide-based self-healing hydrogels: Design and biomedical applications.
    Cai L; Liu S; Guo J; Jia YG
    Acta Biomater; 2020 Sep; 113():84-100. PubMed ID: 32634482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances of self-assembling peptide-based hydrogels for biomedical applications.
    Li J; Xing R; Bai S; Yan X
    Soft Matter; 2019 Feb; 15(8):1704-1715. PubMed ID: 30724947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.