These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 35970625)
1. Application of UNETR for automatic cochlear segmentation in temporal bone CTs. Li Z; Zhou L; Tan S; Tang A Auris Nasus Larynx; 2023 Apr; 50(2):212-217. PubMed ID: 35970625 [TBL] [Abstract][Full Text] [Related]
2. Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. Heutink F; Koch V; Verbist B; van der Woude WJ; Mylanus E; Huinck W; Sechopoulos I; Caballo M Comput Methods Programs Biomed; 2020 Jul; 191():105387. PubMed ID: 32109685 [TBL] [Abstract][Full Text] [Related]
3. Automatic multi-label temporal bone computed tomography segmentation with deep learning. Zhou L; Li Z Int J Med Robot; 2023 Oct; 19(5):e2536. PubMed ID: 37203865 [TBL] [Abstract][Full Text] [Related]
4. Automatic segmentation of temporal bone structures from clinical conventional CT using a CNN approach. Lv Y; Ke J; Xu Y; Shen Y; Wang J; Wang J Int J Med Robot; 2021 Apr; 17(2):e2229. PubMed ID: 33462998 [TBL] [Abstract][Full Text] [Related]
5. [Application of 3D U-net in automatic segmentation of middle ear surgery structures in temporal bone CT]. Ke J; Lv Y; DU Y; Wang J; Wang J; Sun S; Ma F Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2020 Oct; 34(10):870-873. PubMed ID: 33254288 [No Abstract] [Full Text] [Related]
6. Utility of deep learning for the diagnosis of cochlear malformation on temporal bone CT. Li Z; Zhou L; Bin X; Tan S; Tan Z; Tang A Jpn J Radiol; 2024 Mar; 42(3):261-267. PubMed ID: 37812304 [TBL] [Abstract][Full Text] [Related]
7. PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans. Nikan S; Van Osch K; Bartling M; Allen DG; Rohani SA; Connors B; Agrawal SK; Ladak HM IEEE Trans Image Process; 2021; 30():739-753. PubMed ID: 33226942 [TBL] [Abstract][Full Text] [Related]
8. Variability in Manual Segmentation of Temporal Bone Structures in Cone Beam CT Images. Lee JW; Andersen SAW; Hittle B; Powell KA; Al-Fartoussi H; Banks L; Brannen Z; Lahchich M; Wiet GJ Otol Neurotol; 2024 Mar; 45(3):e137-e141. PubMed ID: 38361290 [TBL] [Abstract][Full Text] [Related]
9. A Self-Configuring Deep Learning Network for Segmentation of Temporal Bone Anatomy in Cone-Beam CT Imaging. Ding AS; Lu A; Li Z; Sahu M; Galaiya D; Siewerdsen JH; Unberath M; Taylor RH; Creighton FX Otolaryngol Head Neck Surg; 2023 Oct; 169(4):988-998. PubMed ID: 36883992 [TBL] [Abstract][Full Text] [Related]
10. Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients. Reda FA; McRackan TR; Labadie RF; Dawant BM; Noble JH Med Image Anal; 2014 Apr; 18(3):605-15. PubMed ID: 24650801 [TBL] [Abstract][Full Text] [Related]
11. Patient-specific estimation of detailed cochlear shape from clinical CT images. Kjer HM; Fagertun J; Wimmer W; Gerber N; Vera S; Barazzetti L; Mangado N; Ceresa M; Piella G; Stark T; Stauber M; Reyes M; Weber S; Caversaccio M; González Ballester MÁ; Paulsen RR Int J Comput Assist Radiol Surg; 2018 Mar; 13(3):389-396. PubMed ID: 29305790 [TBL] [Abstract][Full Text] [Related]
12. Fully automated segmentation in temporal bone CT with neural network: a preliminary assessment study. Wang J; Lv Y; Wang J; Ma F; Du Y; Fan X; Wang M; Ke J BMC Med Imaging; 2021 Nov; 21(1):166. PubMed ID: 34753454 [TBL] [Abstract][Full Text] [Related]
14. Anatomical Variations of the Human Cochlea Determined from Micro-CT and High-Resolution CT Imaging and Reconstruction. Tang J; Tang X; Li Z; Liu Y; Tan S; Li H; Ke R; Wang Z; Gong L; Tang A Anat Rec (Hoboken); 2018 Jun; 301(6):1086-1095. PubMed ID: 29160929 [TBL] [Abstract][Full Text] [Related]
15. Automatic cochlear multimodal 3D image segmentation and analysis using atlas-model-based method. Al-Dhamari I; Helal R; Abdelaziz T; Waldeck S; Paulus D Cochlear Implants Int; 2024 Jan; 25(1):46-58. PubMed ID: 37922404 [TBL] [Abstract][Full Text] [Related]
16. Atlas-based segmentation of cochlear microstructures in cone beam CT. Powell KA; Wiet GJ; Hittle B; Oswald GI; Keith JP; Stredney D; Andersen SAW Int J Comput Assist Radiol Surg; 2021 Mar; 16(3):363-373. PubMed ID: 33580852 [TBL] [Abstract][Full Text] [Related]
17. Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework. Dot G; Schouman T; Dubois G; Rouch P; Gajny L Eur Radiol; 2022 Jun; 32(6):3639-3648. PubMed ID: 35037088 [TBL] [Abstract][Full Text] [Related]
18. A geometric alignment for human temporal bone CT images via lateral semicircular canals segmentation. Li X; Fu P; Yin H; Wang Z; Zhu Z; Qin Y; Zhuo L Med Phys; 2022 Oct; 49(10):6439-6450. PubMed ID: 35904081 [TBL] [Abstract][Full Text] [Related]
19. A Two-Phase Approach using Mask R-CNN and 3D U-Net for High-Accuracy Automatic Segmentation of Pancreas in CT Imaging. Dogan RO; Dogan H; Bayrak C; Kayikcioglu T Comput Methods Programs Biomed; 2021 Aug; 207():106141. PubMed ID: 34020373 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Skull Radiograph and Computed Tomography Measurements of Cochlear Implant Insertion Angles. Gallant S; Friedmann DR; Hagiwara M; Roland JT; Svirsky MA; Jethanamest D Otol Neurotol; 2019 Mar; 40(3):e298-e303. PubMed ID: 30741910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]