BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 35971025)

  • 1. A pilot study of deep learning-based CT volumetry for traumatic hemothorax.
    Dreizin D; Nixon B; Hu J; Albert B; Yan C; Yang G; Chen H; Liang Y; Kim N; Jeudy J; Li G; Smith EB; Unberath M
    Emerg Radiol; 2022 Dec; 29(6):995-1002. PubMed ID: 35971025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictors of retained hemothorax in trauma: Results of an Eastern Association for the Surgery of Trauma multi-institutional trial.
    Prakash PS; Moore SA; Rezende-Neto JB; Trpcic S; Dunn JA; Smoot B; Jenkins DH; Cardenas T; Mukherjee K; Farnsworth J; Wild J; Young K; Schroeppel TJ; Coimbra R; Lee J; Skarupa DJ; Sabra MJ; Carrick MM; Moore FO; Ward J; Geng T; Lapham D; Piccinini A; Inaba K; Dodgion C; Gooley B; Schwartz T; Shraga S; Haan JM; Lightwine K; Burris J; Agrawal V; Seamon MJ; Cannon JW
    J Trauma Acute Care Surg; 2020 Oct; 89(4):679-685. PubMed ID: 32649619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of a Deep Learning Algorithm for Automated Segmentation and Quantification of Traumatic Pelvic Hematomas on CT.
    Dreizin D; Zhou Y; Zhang Y; Tirada N; Yuille AL
    J Digit Imaging; 2020 Feb; 33(1):243-251. PubMed ID: 31172331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A deep learning-based self-adapting ensemble method for segmentation in gynecological brachytherapy.
    Li Z; Zhu Q; Zhang L; Yang X; Li Z; Fu J
    Radiat Oncol; 2022 Sep; 17(1):152. PubMed ID: 36064571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based multimodal segmentation of oropharyngeal squamous cell carcinoma on CT and MRI using self-configuring nnU-Net.
    Choi Y; Bang J; Kim SY; Seo M; Jang J
    Eur Radiol; 2024 Jan; ():. PubMed ID: 38243135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multiscale Deep Learning Method for Quantitative Visualization of Traumatic Hemoperitoneum at CT: Assessment of Feasibility and Comparison with Subjective Categorical Estimation.
    Dreizin D; Zhou Y; Fu S; Wang Y; Li G; Champ K; Siegel E; Wang Z; Chen T; Yuille AL
    Radiol Artif Intell; 2020 Nov; 2(6):e190220. PubMed ID: 33330848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis.
    Dreizin D; Chen T; Liang Y; Zhou Y; Paes F; Wang Y; Yuille AL; Roth P; Champ K; Li G; McLenithan A; Morrison JJ
    Abdom Radiol (NY); 2021 Jun; 46(6):2556-2566. PubMed ID: 33469691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward automated interpretable AAST grading for blunt splenic injury.
    Chen H; Unberath M; Dreizin D
    Emerg Radiol; 2023 Feb; 30(1):41-50. PubMed ID: 36371579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.
    Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK
    J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mycobacterial cavity on chest computed tomography: clinical implications and deep learning-based automatic detection with quantification.
    Yoon I; Hong JH; Witanto JN; Yim JJ; Kwak N; Goo JM; Yoon SH
    Quant Imaging Med Surg; 2023 Feb; 13(2):747-762. PubMed ID: 36819253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: Potential role in personalized forecasting and decision support.
    Dreizin D; Zhou Y; Chen T; Li G; Yuille AL; McLenithan A; Morrison JJ
    J Trauma Acute Care Surg; 2020 Mar; 88(3):425-433. PubMed ID: 32107356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT-based pleural effusion volume estimation formula demonstrates low accuracy and reproducibility for traumatic hemothorax.
    Tewkesbury G; Beyer C; Eddinger K; McLauchlan N; Tran A; Cannon JW; Knollmann F
    Injury; 2024 Jan; 55(1):111112. PubMed ID: 37839918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. nnU-Net-Based Pancreas Segmentation and Volume Measurement on CT Imaging in Patients with Pancreatic Cancer.
    Yang E; Kim JH; Min JH; Jeong WK; Hwang JA; Lee JH; Shin J; Kim H; Lee SE; Baek SY
    Acad Radiol; 2024 Feb; ():. PubMed ID: 38350812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polycystic liver: automatic segmentation using deep learning on CT is faster and as accurate compared to manual segmentation.
    Cayot B; Milot L; Nempont O; Vlachomitrou AS; Langlois-Jacques C; Dumortier J; Boillot O; Arnaud K; Barten TRM; Drenth JPH; Valette PJ
    Eur Radiol; 2022 Jul; 32(7):4780-4790. PubMed ID: 35142898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully automatic volume measurement of the adrenal gland on CT using deep learning to classify adrenal hyperplasia.
    Kim TM; Choi SJ; Ko JY; Kim S; Jeong CW; Cho JY; Kim SY; Kim YG
    Eur Radiol; 2023 Jun; 33(6):4292-4302. PubMed ID: 36571602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pneumothorax and Hemothorax in the Era of Frequent Chest Computed Tomography for the Evaluation of Adult Patients With Blunt Trauma.
    Rodriguez RM; Canseco K; Baumann BM; Mower WR; Langdorf MI; Medak AJ; Anglin DR; Hendey GW; Addo N; Nishijima D; Raja AS
    Ann Emerg Med; 2019 Jan; 73(1):58-65. PubMed ID: 30287121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulmonary contusion: automated deep learning-based quantitative visualization.
    Sarkar N; Zhang L; Campbell P; Liang Y; Li G; Khedr M; Khetan U; Dreizin D
    Emerg Radiol; 2023 Aug; 30(4):435-441. PubMed ID: 37318609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction.
    Heidenreich JF; Gassenmaier T; Ankenbrand MJ; Bley TA; Wech T
    Eur J Radiol; 2021 Aug; 141():109817. PubMed ID: 34144308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation.
    Jun Guo B; He X; Lei Y; Harms J; Wang T; Curran WJ; Liu T; Jiang Zhang L; Yang X
    Med Phys; 2020 Apr; 47(4):1775-1785. PubMed ID: 32017118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.