BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 35971904)

  • 1. Effects of pH on simultaneous Cr(VI) and p-chlorophenol removal and electrochemical performance in
    Wang Y; Zhang X; Lin H
    Environ Technol; 2024 Jan; 45(3):483-494. PubMed ID: 35971904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The in-depth revelation of the mechanism by which a downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell synchronously removes Cr(VI) and p-chlorophenol and generates electricity.
    Wang Y; Zhang X; Xiao L; Lin H
    Environ Res; 2023 Jan; 216(Pt 1):114451. PubMed ID: 36183789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of Cr(vi) and
    Wang Y; Zhang X; Lin H
    RSC Adv; 2022 May; 12(24):15123-15132. PubMed ID: 35702437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal and reduction mechanism of Cr (VI) in Leersia hexandra Swartz constructed wetland-microbial fuel cell coupling system.
    Shi Y; Liu Q; Wu G; Zhao S; Li Y; You S; Huang G
    Ecotoxicol Environ Saf; 2024 Jun; 277():116373. PubMed ID: 38653023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The electron transport mechanism of downflow Leersia hexandra Swartz constructed wetland-microbial fuel cell when used to treat Cr(VI) and p-chlorophenol.
    Wang Y; Zhang X; Lin Y; Lin H
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):37929-37945. PubMed ID: 36576625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of lab-scale microbial fuel cell coupled with unplanted constructed wetland for hexavalent chromium removal and electricity production.
    Mu C; Wang L; Wang L
    Environ Sci Pollut Res Int; 2020 Jul; 27(20):25140-25148. PubMed ID: 32347498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Cr (VI) concentration on Cr (VI) reduction and electricity production in microbial fuel cell.
    Zhang X; Liu Y; Li C
    Environ Sci Pollut Res Int; 2021 Oct; 28(38):54170-54176. PubMed ID: 34405326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus Enhances Cr(VI) Uptake and Accumulation in Leersia hexandra Swartz.
    Wu CC; Liu J; Zhang XH; Wei SG
    Bull Environ Contam Toxicol; 2018 Dec; 101(6):738-743. PubMed ID: 30306192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wood carbon electrode in microbial fuel cell enhances chromium reduction and bioelectricity generation.
    Ni H; Khan A; Yang Z; Gong Y; Ali G; Liu P; Chen F; Li X
    Environ Sci Pollut Res Int; 2022 Feb; 29(9):13709-13719. PubMed ID: 34595714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance optimization of two-stage constructed wetland-microbial fuel cell system for the treatment of high-concentration wastewater.
    Han J; Zhao J; Wang Y; Shu L; Tang J
    Environ Sci Pollut Res Int; 2023 May; 30(23):63620-63630. PubMed ID: 37052840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficacy of electrode position in microbial fuel cell for simultaneous Cr(VI) reduction and bioelectricity production.
    Zhou J; Li M; Zhou W; Hu J; Long Y; Tsang YF; Zhou S
    Sci Total Environ; 2020 Dec; 748():141425. PubMed ID: 32798878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioelectricity generation from air-cathode microbial fuel cell connected to constructed wetland.
    Yan D; Song X; Weng B; Yu Z; Bi W; Wang J
    Water Sci Technol; 2018 Dec; 78(9):1990-1996. PubMed ID: 30566102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance optimization and microbial community evaluation for domestic wastewater treatment in a constructed wetland-microbial fuel cell.
    Yang H; Chen J; Yu L; Li W; Huang X; Qin Q; Zhu S
    Environ Res; 2022 Sep; 212(Pt B):113249. PubMed ID: 35421392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nickel removal and synchronous bioelectricity generation based on substrate types in microbial fuel cell coupled with constructed wetland: performance and microbial response.
    Cheng Z; Xu D; Zhang Q; Tao Z; Hong R; Chen Y; Tang X; Zeng S; Wang S
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):19725-19736. PubMed ID: 36239892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production.
    Guan CY; Tseng YH; Tsang DCW; Hu A; Yu CP
    J Hazard Mater; 2019 Mar; 365():137-145. PubMed ID: 30419460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced denitrification and power generation of municipal wastewater treatment plants (WWTPs) effluents with biomass in microbial fuel cell coupled with constructed wetland.
    Tao M; Guan L; Jing Z; Tao Z; Wang Y; Luo H; Wang Y
    Sci Total Environ; 2020 Mar; 709():136159. PubMed ID: 31887514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effectiveness of constructed wetland integrated with microbial fuel cell for domestic wastewater treatment and to facilitate power generation.
    Yadav A; Jadhav DA; Ghangrekar MM; Mitra A
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51117-51129. PubMed ID: 34826088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.
    Gangadharan P; Nambi IM
    Water Sci Technol; 2015; 71(3):353-8. PubMed ID: 25714633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar loaded with root exudates of hyperaccumulator Leersia hexandra Swartz facilitated Cr(VI) reduction by shaping soil functional microbial communities.
    Xiao W; Zhang Q; Huang M; Zhao S; Chen D; Gao N; Chu T; Ye X
    Chemosphere; 2024 Apr; 353():141636. PubMed ID: 38447895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.