These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35972203)

  • 21. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis.
    Bou-Torrent J; Salla-Martret M; Brandt R; Musielak T; Palauqui JC; Martínez-García JF; Wenkel S
    Plant Signal Behav; 2012 Nov; 7(11):1382-7. PubMed ID: 22918502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive analysis of the homeodomain-leucine zipper IV transcription factor family in Cucumis sativus.
    Fu R; Liu W; Li Q; Li J; Wang L; Ren Z
    Genome; 2013 Jul; 56(7):395-405. PubMed ID: 24099392
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of HD-ZIP III transcription factors and miR165/166 in vascular development and secondary cell wall formation.
    Du Q; Wang H
    Plant Signal Behav; 2015; 10(10):e1078955. PubMed ID: 26340415
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Homeodomain leucine zipper (HD-Zip) IV transcription factors in plant development and plant protection from deleterious environmental factors.
    Chew W; Hrmova M; Lopato S
    Int J Mol Sci; 2013 Apr; 14(4):8122-47. PubMed ID: 23584027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica).
    Zhang CH; Ma RJ; Shen ZJ; Sun X; Korir NK; Yu ML
    Genet Mol Res; 2014 Apr; 13(2):2654-68. PubMed ID: 24782054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transitions in development - an interview with Tom Nowakowski.
    Eve A
    Development; 2021 Oct; 148(19):. PubMed ID: 34568895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A feedback regulatory module formed by LITTLE ZIPPER and HD-ZIPIII genes.
    Wenkel S; Emery J; Hou BH; Evans MM; Barton MK
    Plant Cell; 2007 Nov; 19(11):3379-90. PubMed ID: 18055602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The HD-ZIP II Transcription Factors Regulate Plant Architecture through the Auxin Pathway.
    He G; Liu P; Zhao H; Sun J
    Int J Mol Sci; 2020 May; 21(9):. PubMed ID: 32375344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus.
    Liu W; Fu R; Li Q; Li J; Wang L; Ren Z
    Gene; 2013 Dec; 531(2):279-87. PubMed ID: 24013079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Themes and variations in cell type patterning in the plant epidermis.
    Robinson DO; Roeder AH
    Curr Opin Genet Dev; 2015 Jun; 32():55-65. PubMed ID: 25727387
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development.
    Turchi L; Baima S; Morelli G; Ruberti I
    J Exp Bot; 2015 Aug; 66(16):5043-53. PubMed ID: 25911742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early-career researchers: an interview with Michael Rosario.
    J Exp Biol; 2019 Oct; 222(Pt 20):. PubMed ID: 31615859
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of class III homeodomain-leucine zipper genes in streptophytes.
    Floyd SK; Zalewski CS; Bowman JL
    Genetics; 2006 May; 173(1):373-88. PubMed ID: 16489224
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice.
    Luan W; Shen A; Jin Z; Song S; Li Z; Sha A
    Sci China Life Sci; 2013 Dec; 56(12):1113-23. PubMed ID: 24302292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The START domain potentiates HD-ZIPIII transcriptional activity.
    Husbands AY; Feller A; Aggarwal V; Dresden CE; Holub AS; Ha T; Timmermans MCP
    Plant Cell; 2023 May; 35(6):2332-2348. PubMed ID: 36861320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary history of HOMEODOMAIN LEUCINE ZIPPER transcription factors during plant transition to land.
    Romani F; Reinheimer R; Florent SN; Bowman JL; Moreno JE
    New Phytol; 2018 Jul; 219(1):408-421. PubMed ID: 29635737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli.
    Harris JC; Hrmova M; Lopato S; Langridge P
    New Phytol; 2011 Jun; 190(4):823-837. PubMed ID: 21517872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. START lipid/sterol-binding domains are amplified in plants and are predominantly associated with homeodomain transcription factors.
    Schrick K; Nguyen D; Karlowski WM; Mayer KF
    Genome Biol; 2004; 5(6):R41. PubMed ID: 15186492
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Positively charged residues at the N-terminal arm of the homeodomain are required for efficient DNA binding by homeodomain-leucine zipper proteins.
    Palena CM; Tron AE; Bertoncini CW; Gonzalez DH; Chan RL
    J Mol Biol; 2001 Apr; 308(1):39-47. PubMed ID: 11302705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of stem cell homeostasis via interlocking microRNA and microProtein feedback loops.
    Brandt R; Xie Y; Musielak T; Graeff M; Stierhof YD; Huang H; Liu CM; Wenkel S
    Mech Dev; 2013 Jan; 130(1):25-33. PubMed ID: 22781836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.