These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35972203)

  • 41. Key role of the motor protein Kinesin 13B in the activity of homeodomain-leucine zipper I transcription factors.
    Miguel VN; Ribichich KF; Giacomelli JI; Chan RL
    J Exp Bot; 2020 Oct; 71(20):6282-6296. PubMed ID: 32882705
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Arabidopsis thaliana homeodomain-leucine zipper type I transcription factors contribute to control leaf venation patterning.
    Moreno JE; Romani F; Chan RL
    Plant Signal Behav; 2018 Mar; 13(3):e1448334. PubMed ID: 29509063
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins.
    Halbach T; Scheer N; Werr W
    Nucleic Acids Res; 2000 Sep; 28(18):3542-50. PubMed ID: 10982874
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Leading the way in biomedical engineering: an interview with Robert Langer. Interview by Hannah Stanwix, Commissioning Editor.
    Langer R
    Nanomedicine (Lond); 2012 Oct; 7(10):1483-4. PubMed ID: 23148539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Homeodomain-leucine zipper proteins interact with a plant homologue of the transcriptional co-activator multiprotein bridging factor 1.
    Zanetti ME; Chan RL; Godoy AV; González DH; Casalongué CA
    J Biochem Mol Biol; 2004 May; 37(3):320-4. PubMed ID: 15469713
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification and characterization of stress responsive homeodomain leucine zipper transcription factors in Medicago truncatula.
    Li X; Hou Y; Zhang F; Li M; Yi F; Kang J; Yang Q; Long R
    Mol Biol Rep; 2022 May; 49(5):3569-3581. PubMed ID: 35118569
    [TBL] [Abstract][Full Text] [Related]  

  • 47. HD-ZIP Gene Family: Potential Roles in Improving Plant Growth and Regulating Stress-Responsive Mechanisms in Plants.
    Sharif R; Raza A; Chen P; Li Y; El-Ballat EM; Rauf A; Hano C; El-Esawi MA
    Genes (Basel); 2021 Aug; 12(8):. PubMed ID: 34440430
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An interview with Mark G. Hans.
    Hans MG; Nojima Mda C
    Dental Press J Orthod; 2014; 19(3):26-35. PubMed ID: 25162563
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evolution of the class IV HD-zip gene family in streptophytes.
    Zalewski CS; Floyd SK; Furumizu C; Sakakibara K; Stevenson DW; Bowman JL
    Mol Biol Evol; 2013 Oct; 30(10):2347-65. PubMed ID: 23894141
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The leucine zipper of NRL interacts with the CRX homeodomain. A possible mechanism of transcriptional synergy in rhodopsin regulation.
    Mitton KP; Swain PK; Chen S; Xu S; Zack DJ; Swaroop A
    J Biol Chem; 2000 Sep; 275(38):29794-9. PubMed ID: 10887186
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evolution of the class III HD-Zip gene family in land plants.
    Prigge MJ; Clark SE
    Evol Dev; 2006; 8(4):350-61. PubMed ID: 16805899
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Engineering the loop region of a homeodomain-leucine zipper protein promotes efficient binding to a monomeric DNA binding site.
    Tron AE; Welchen E; Gonzalez DH
    Biochemistry; 2004 Dec; 43(50):15845-51. PubMed ID: 15595839
    [TBL] [Abstract][Full Text] [Related]  

  • 53. LF1 regulates the lateral organs polarity development in rice.
    Zhang T; You J; Zhang Y; Yao W; Chen W; Duan Q; Xiao W; Ye L; Zhou Y; Sang X; Ling Y; He G; Li Y
    New Phytol; 2021 Aug; 231(3):1265-1277. PubMed ID: 33469925
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification and analysis of HD-Zip genes involved in the leaf development of Liriodendron chinense using multidimensional analysis.
    Tu Z; Yu L; Wen S; Zhai X; Li W; Li H
    Plant Biol (Stuttg); 2022 Aug; 24(5):874-886. PubMed ID: 35491433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Origin of a novel regulatory module by duplication and degeneration of an ancient plant transcription factor.
    Floyd SK; Ryan JG; Conway SJ; Brenner E; Burris KP; Burris JN; Chen T; Edger PP; Graham SW; Leebens-Mack JH; Pires JC; Rothfels CJ; Sigel EM; Stevenson DW; Neal Stewart C; Wong GK; Bowman JL
    Mol Phylogenet Evol; 2014 Dec; 81():159-73. PubMed ID: 25263420
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions.
    Söderman E; Hjellström M; Fahleson J; Engström P
    Plant Mol Biol; 1999 Aug; 40(6):1073-83. PubMed ID: 10527431
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice.
    Meijer AH; Scarpella E; van Dijk EL; Qin L; Taal AJ; Rueb S; Harrington SE; McCouch SR; Schilperoort RA; Hoge JH
    Plant J; 1997 Feb; 11(2):263-76. PubMed ID: 9076993
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules.
    Yamada T; Sasaki Y; Hashimoto K; Nakajima K; Gasser CS
    Development; 2016 Feb; 143(3):422-6. PubMed ID: 26700684
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A per-ARNT-sim-like sensor domain uniquely regulates the activity of the homeodomain leucine zipper transcription factor REVOLUTA in Arabidopsis.
    Magnani E; Barton MK
    Plant Cell; 2011 Feb; 23(2):567-82. PubMed ID: 21357492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing synthetic transcription factors: A structural perspective.
    Boral A; Khamaru M; Mitra D
    Adv Protein Chem Struct Biol; 2022; 130():245-287. PubMed ID: 35534109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.