These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35972784)

  • 1. Functional Chemical Motor Coatings for Modular Powering of Self-Propelled Particles.
    Lin CH; Kinane C; Zhang Z; Pena-Francesch A
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39332-39342. PubMed ID: 35972784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional and biodegradable self-propelled protein motors.
    Pena-Francesch A; Giltinan J; Sitti M
    Nat Commun; 2019 Jul; 10(1):3188. PubMed ID: 31320630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasticized liquid crystal networks and chemical motors for the active control of power transmission in mechanical devices.
    Pinchin NP; Lin CH; Kinane CA; Yamada N; Pena-Francesch A; Shahsavan H
    Soft Matter; 2022 Nov; 18(42):8063-8070. PubMed ID: 35969176
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ON-OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch.
    Zhu G; Zhang S; Lu G; Peng B; Lin C; Zhang L; Shi F; Zhang Q; Cheng M
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405287. PubMed ID: 38712847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Advances in polydopamine surface modification for capillary electrochromatography].
    Yi G; Ji B; Xia Z; Fu Q
    Se Pu; 2020 Sep; 38(9):1057-1068. PubMed ID: 34213272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Operated Dual-Mode Propulsion at the Liquid/Air Interface Using Flexible, Superhydrophobic, and Thermally Stable Photothermal Paper.
    Yang RL; Zhu YJ; Qin DD; Xiong ZC
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1339-1347. PubMed ID: 31880902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motion Control of Urea-Powered Biocompatible Hollow Microcapsules.
    Ma X; Wang X; Hahn K; Sánchez S
    ACS Nano; 2016 Mar; 10(3):3597-605. PubMed ID: 26863183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multi-engine Marangoni Rotor with Controlled Motion for Mini-Generator Application.
    Lu G; Zhu G; Peng B; Zhao R; Shi F; Cheng M
    ACS Appl Mater Interfaces; 2023 May; 15(19):23980-23988. PubMed ID: 37140932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly of Fillable Microrobotic Systems by Microfluidic Loading with Dip Sealing.
    Sun R; Song X; Zhou K; Zuo Y; Wang R; Rifaie-Graham O; Peeler DJ; Xie R; Leng Y; Geng H; Brachi G; Ma Y; Liu Y; Barron L; Stevens MM
    Adv Mater; 2023 Mar; 35(13):e2207791. PubMed ID: 36502366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H
    Panda A; Reddy AS; Venkateswarlu S; Yoon M
    Nanoscale; 2018 Aug; 10(34):16268-16277. PubMed ID: 30128456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-propelled micromotors based on Au-mesoporous silica nanorods.
    Wang YS; Xia H; Lv C; Wang L; Dong WF; Feng J; Sun HB
    Nanoscale; 2015 Jul; 7(28):11951-5. PubMed ID: 26132881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microrobots in Brewery: Dual Magnetic/Light-Powered Hybrid Microrobots for Preventing Microbial Contamination in Beer.
    Villa K; Vyskočil J; Ying Y; Zelenka J; Pumera M
    Chemistry; 2020 Mar; 26(14):3039-3043. PubMed ID: 31943446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Propelled Supracolloidal Fibers from Multifunctional Polymer Surfactants and Droplets.
    Zhao J; Santa Chalarca CF; Nunes JK; Stone HA; Emrick T
    Macromol Rapid Commun; 2020 Aug; 41(15):e2000334. PubMed ID: 32671939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications.
    Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C
    Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloisite Microrobots as Self-Propelling Cleaners for Fast and Efficient Removal of Improvised Organophosphate Nerve Agents.
    Maric T; Nasir MZM; Mayorga-Martinez CC; Rosli NF; Budanović M; Szőkölová K; Webster RD; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31832-31843. PubMed ID: 31433151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Operational Mechanisms of Chemically Propelled Motors with Micropumps.
    Esplandiu MJ; Zhang K; Fraxedas J; Sepulveda B; Reguera D
    Acc Chem Res; 2018 Sep; 51(9):1921-1930. PubMed ID: 30192137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance Marangoni hydrogel rotors with asymmetric porosity and drag reduction profile.
    Wu H; Chen Y; Xu W; Xin C; Wu T; Feng W; Yu H; Chen C; Jiang S; Zhang Y; Wang X; Duan M; Zhang C; Liu S; Wang D; Hu Y; Li J; Li E; Wu H; Chu J; Wu D
    Nat Commun; 2023 Jan; 14(1):20. PubMed ID: 36596764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic Janus Foam Motors: Self-Propulsion and On-The-Fly Oil Absorption.
    Li X; Mou F; Guo J; Deng Z; Chen C; Xu L; Luo M; Guan J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications.
    Palagi S; Jager EW; Mazzolai B; Beccai L
    Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.