These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35972839)

  • 41. Design, Synthesis, and Molecular Docking of Some Novel Tacrine Based Cyclopentapyranopyridine- and Tetrahydropyranoquinoline-Kojic Acid Derivatives as Anti-Acetylcholinesterase Agents.
    Babaee S; Chehardoli G; Akbarzadeh T; Zolfigol MA; Mahdavi M; Rastegari A; Homayouni Moghadam F; Najafi Z
    Chem Biodivers; 2021 Jun; 18(6):e2000924. PubMed ID: 33861892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 2-Arylbenzofurans from Artocarpus lakoocha and methyl ether analogs with potent cholinesterase inhibitory activity.
    Namdaung U; Athipornchai A; Khammee T; Kuno M; Suksamrarn S
    Eur J Med Chem; 2018 Jan; 143():1301-1311. PubMed ID: 29126732
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Novel cinnamic acid-tryptamine hybrids as potent butyrylcholinesterase inhibitors: Synthesis, biological evaluation, and docking study.
    Ghafary S; Najafi Z; Mohammadi-Khanaposhtani M; Nadri H; Edraki N; Ayashi N; Larijani B; Amini M; Mahdavi M
    Arch Pharm (Weinheim); 2018 Oct; 351(10):e1800115. PubMed ID: 30284339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Selenourea and thiourea derivatives of chiral and achiral enetetramines: Synthesis, characterization and enzyme inhibitory properties.
    Yiğit M; Celepci DB; Taslimi P; Yiğit B; Çetinkaya E; Özdemir İ; Aygün M; Gülçin İ
    Bioorg Chem; 2022 Mar; 120():105566. PubMed ID: 34974209
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis, in silico and in vitro studies of hydrazide-hydrazone imine derivatives as potential cholinesterase inhibitors.
    Güngör SA
    Chem Biol Drug Des; 2023 Oct; 102(4):676-691. PubMed ID: 37258044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors.
    Kumar RS; Almansour AI; Arumugam N; Al-Thamili DM; Basiri A; Kotresha D; Manohar TS; Venketesh S; Asad M; Asiri AM
    Bioorg Chem; 2018 Dec; 81():134-143. PubMed ID: 30121001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. 2-Amino thiazole derivatives as inhibitors of some metabolic enzymes: An in vitro and in silico study.
    Korkmaz IN
    Biotechnol Appl Biochem; 2023 Apr; 70(2):659-669. PubMed ID: 35857901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design, synthesis, biological evaluation, and molecular dynamics of novel cholinesterase inhibitors as anti-Alzheimer's agents.
    Shamsimeymandi R; Pourshojaei Y; Eskandari K; Mohammadi-Khanaposhtani M; Abiri A; Khodadadi A; Langarizadeh A; Sharififar F; Amirheidari B; Akbarzadeh T; Lotfian H; Foroumadi A; Asadipour A
    Arch Pharm (Weinheim); 2019 Jul; 352(7):e1800352. PubMed ID: 31136018
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An Efficient Synthesis of bi-Aryl Pyrimidine Heterocycles: Potential New Drug Candidates to Treat Alzheimer's Disease.
    Rehman TU; Khan IU; Ashraf M; Tarazi H; Riaz S; Yar M
    Arch Pharm (Weinheim); 2017 Apr; 350(3-4):. PubMed ID: 28220522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Syntheses, cholinesterases inhibition, and molecular docking studies of pyrido[2,3-b]pyrazine derivatives.
    Hameed A; Zehra ST; Shah SJ; Khan KM; Alharthy RD; Furtmann N; Bajorath J; Tahir MN; Iqbal J
    Chem Biol Drug Des; 2015 Nov; 86(5):1115-20. PubMed ID: 25951978
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and discovery of Novel Thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of Alzheimer's.
    Sun ZQ; Tu LX; Zhuo FJ; Liu SX
    Bioorg Med Chem Lett; 2016 Feb; 26(3):747-750. PubMed ID: 26783181
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors.
    Liu HR; Liu XJ; Fan HQ; Tang JJ; Gao XH; Liu WK
    Bioorg Med Chem; 2014 Nov; 22(21):6124-33. PubMed ID: 25260958
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multitargeted inhibition of key enzymes associated with diabetes and Alzheimer's disease by 1,3,4-oxadiazole derivatives: Synthesis, in vitro screening, and computational studies.
    Fatima B; Saleem F; Salar U; Chigurupati S; Felemban SG; Ul-Haq Z; Tariq SS; Almahmoud SA; Taha M; Shah STA; Khan KM
    Arch Pharm (Weinheim); 2023 Dec; 356(12):e2300384. PubMed ID: 37806747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and biological evaluation of a series of dithiocarbamates as new cholinesterase inhibitors.
    Altıntop MD; Gurkan-Alp AS; Ozkay Y; Kaplancıklı ZA
    Arch Pharm (Weinheim); 2013 Aug; 346(8):571-6. PubMed ID: 23881696
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined QSAR, molecular docking and molecular dynamics study on new Acetylcholinesterase and Butyrylcholinesterase inhibitors.
    Daoud I; Melkemi N; Salah T; Ghalem S
    Comput Biol Chem; 2018 Jun; 74():304-326. PubMed ID: 29747032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cholinesterase inhibitory activity versus aromatic core multiplicity: a facile green synthesis and molecular docking study of novel piperidone embedded thiazolopyrimidines.
    Basiri A; Murugaiyah V; Osman H; Kumar RS; Kia Y; Hooda A; Parsons RB
    Bioorg Med Chem; 2014 Jan; 22(2):906-16. PubMed ID: 24369842
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Structure-activity study of fluorine or chlorine-substituted cinnamic acid derivatives with tertiary amine side chain in acetylcholinesterase and butyrylcholinesterase inhibition.
    Gao XH; Tang JJ; Liu HR; Liu LB; Liu YZ
    Drug Dev Res; 2019 Jun; 80(4):438-445. PubMed ID: 30680760
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cholinesterases inhibition and molecular modeling studies of piperidyl-thienyl and 2-pyrazoline derivatives of chalcones.
    Shah MS; Khan SU; Ejaz SA; Afridi S; Rizvi SUF; Najam-Ul-Haq M; Iqbal J
    Biochem Biophys Res Commun; 2017 Jan; 482(4):615-624. PubMed ID: 27865835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors.
    Kos J; Kozik V; Pindjakova D; Jankech T; Smolinski A; Stepankova S; Hosek J; Oravec M; Jampilek J; Bak A
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33810550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.