These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35973233)

  • 1. Achieving Sustainable and Stable Potassium-Ion Batteries by Leaf-Bioinspired Nanofluidic Flow.
    Zhang X; Wu F; Lv X; Xu L; Huang R; Chen R; Li L
    Adv Mater; 2022 Sep; 34(39):e2204370. PubMed ID: 35973233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries.
    Chen J; Yu D; Zhu Q; Liu X; Wang J; Chen W; Ji R; Qiu K; Guo L; Wang H
    Adv Mater; 2022 Sep; 34(36):e2205678. PubMed ID: 35853459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binder-Free and High-Loading Cathode Realized by Hierarchical Structure for Potassium-Sulfur Batteries.
    Yang K; Kim S; Yang X; Cho M; Lee Y
    Small Methods; 2022 Jan; 6(1):e2100899. PubMed ID: 35041292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Channel Engineering for Rapid Ion Transport: From Nature to Batteries.
    Mei J; Liao T; Sun Z
    Chemistry; 2022 Feb; 28(11):e202103938. PubMed ID: 34881478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial-Derived, Compressible, and Hierarchical Porous Carbon for High-Performance Potassium-Ion Batteries.
    Li H; Cheng Z; Zhang Q; Natan A; Yang Y; Cao D; Zhu H
    Nano Lett; 2018 Nov; 18(11):7407-7413. PubMed ID: 30372622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives.
    Ni J; Li L
    Adv Mater; 2020 Jul; 32(28):e2000288. PubMed ID: 32468715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired 2D nanofluidic membranes for energy applications.
    Lei D; Zhang Z; Jiang L
    Chem Soc Rev; 2024 Mar; 53(5):2300-2325. PubMed ID: 38284167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscale Silicon-Based Anodes: Fundamental Understanding and Industrial Prospects for Practical High-Energy Lithium-Ion Batteries.
    Zhu G; Chao D; Xu W; Wu M; Zhang H
    ACS Nano; 2021 Oct; 15(10):15567-15593. PubMed ID: 34569781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl Conducting Hydrogels Enable Low-Maintenance Commercially Sized Rechargeable Zn-MnO
    Cho J; Yadav GG; Weiner M; Huang J; Upreti A; Wei X; Yakobov R; Hawkins BE; Nyce M; Lambert TN; Arnot DJ; Bell NS; Schorr NB; Booth MN; Turney DE; Cowles G; Banerjee S
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrode Degradation in Lithium-Ion Batteries.
    Pender JP; Jha G; Youn DH; Ziegler JM; Andoni I; Choi EJ; Heller A; Dunn BS; Weiss PS; Penner RM; Mullins CB
    ACS Nano; 2020 Feb; 14(2):1243-1295. PubMed ID: 31895532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives.
    Cao C; Liang F; Zhang W; Liu H; Liu H; Zhang H; Mao J; Zhang Y; Feng Y; Yao X; Ge M; Tang Y
    Small; 2021 Oct; 17(43):e2102233. PubMed ID: 34350695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries.
    Zhao Q; Zhu Z; Chen J
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28370809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soluble Organic Cathodes Enable Long Cycle Life, High Rate, and Wide-Temperature Lithium-Ion Batteries.
    Li M; Yang J; Shi Y; Chen Z; Bai P; Su H; Xiong P; Cheng M; Zhao J; Xu Y
    Adv Mater; 2022 Feb; 34(5):e2107226. PubMed ID: 34796556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Mechanical and Electrical Properties of Porous Electrodes for Architecting 3D Microsupercapacitors with Batteries-Level Energy.
    Li C; Li X; Yang Q; Sun P; Wu L; Nie B; Tian H; Wang Y; Wang C; Chen X; Shao J
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004957. PubMed ID: 34151539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Material and Structural Design of Novel Binder Systems for High-Energy, High-Power Lithium-Ion Batteries.
    Shi Y; Zhou X; Yu G
    Acc Chem Res; 2017 Nov; 50(11):2642-2652. PubMed ID: 28981258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amorphous Tellurium-Embedded Hierarchical Porous Carbon Nanofibers as High-Rate and Long-Life Electrodes for Potassium-Ion Batteries.
    Yu D; Li Q; Zhang W; Huang S
    Small; 2022 Aug; 18(32):e2202750. PubMed ID: 35810453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Intertexture Carbon-Free Iron Sulfides as Advanced High Tap Density Anodes for Rechargeable Batteries.
    Xiao Y; Hwang JY; Sun YK
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39416-39424. PubMed ID: 29064233
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.