These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 35973254)
1. Ultra-stable Li||LiFePO Lin Y; Zhang X; Liu Y; Wang Q; Lin C; Chen S; Zhang Y J Colloid Interface Sci; 2022 Dec; 628(Pt B):14-23. PubMed ID: 35973254 [TBL] [Abstract][Full Text] [Related]
2. Improving dual electrodes compatibility through tailoring solvation structures enabling high-performance and low-temperature Li||LiFePO Chen Y; Ma B; Wang Q; Liu L; Wang L; Ding S; Yu W J Colloid Interface Sci; 2024 Jan; 654(Pt A):550-558. PubMed ID: 37862804 [TBL] [Abstract][Full Text] [Related]
3. Stable Harsh-Temperature Lithium Metal Batteries Enabled by Tailoring Solvation Structure in Ether Electrolytes. Liu Y; Lin Y; Yang Z; Lin C; Zhang X; Chen S; Hu G; Sa B; Chen Y; Zhang Y ACS Nano; 2023 Oct; 17(20):19625-19639. PubMed ID: 37819135 [TBL] [Abstract][Full Text] [Related]
4. Long-Life and High-Rate-Charging Lithium Metal Batteries Enabled by a Flexible Active Solid Electrolyte Interphase Layer. Zhang D; Gu R; Guo W; Xu Q; Li H; Min Y ACS Appl Mater Interfaces; 2021 Dec; 13(50):60678-60688. PubMed ID: 34878253 [TBL] [Abstract][Full Text] [Related]
5. Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from -80°C to 80°C. Li Z; Yao YX; Zheng M; Sun S; Yang Y; Xiao Y; Xu L; Jin CB; Yue XY; Song T; Wu P; Yan C; Zhang Q Angew Chem Int Ed Engl; 2024 Jul; ():e202409409. PubMed ID: 39008227 [TBL] [Abstract][Full Text] [Related]
6. Achieving Uniform Li Deposition and Suppressed Electrolyte Flammability in Li-Metal Batteries via Designing Localized High-Concentration Electrolytes. Wang X; Huang H; Zhang H; Dong Q; Zhang W; Gao M; Li J; Chen B; Guo H; Han X Small; 2024 Aug; 20(35):e2401100. PubMed ID: 38721947 [TBL] [Abstract][Full Text] [Related]
7. Multiple Dynamic Bonds-Driven Integrated Cathode/Polymer Electrolyte for Stable All-Solid-State Lithium Metal Batteries. Chen J; Deng X; Gao Y; Zhao Y; Kong X; Rong Q; Xiong J; Yu D; Ding S Angew Chem Int Ed Engl; 2023 Aug; 62(35):e202307255. PubMed ID: 37431962 [TBL] [Abstract][Full Text] [Related]
8. Designing Anion-Derived Solid Electrolyte Interphase in a Siloxane-Based Electrolyte for Lithium-Metal Batteries. Wu J; Zhou T; Zhong B; Wang Q; Liu W; Zhou H ACS Appl Mater Interfaces; 2022 Jun; 14(24):27873-27881. PubMed ID: 35671243 [TBL] [Abstract][Full Text] [Related]
9. Enhancing the Charging Performance of Lithium-Ion Batteries by Reducing SEI and Charge Transfer Resistances. Li Z; Liu J; Qin Y; Gao T ACS Appl Mater Interfaces; 2022 Jul; ():. PubMed ID: 35822941 [TBL] [Abstract][Full Text] [Related]
10. Formulating compatible non-flammable electrolyte for lithium-ion batteries with ethoxy (pentafluoro) cyclotriphosphazene. Liu Y; Lu J; Gong X; Liu J; Chen B; Wu C; Fang Z RSC Adv; 2024 Apr; 14(16):11533-11540. PubMed ID: 38601706 [TBL] [Abstract][Full Text] [Related]
11. Electrolyte-Solvent-Modified Alternating Copolymer as a Single-Ion Solid Polymer Electrolyte for High-Performance Lithium Metal Batteries. Cao C; Li Y; Chen S; Peng C; Li Z; Tang L; Feng Y; Feng W ACS Appl Mater Interfaces; 2019 Oct; 11(39):35683-35692. PubMed ID: 31498586 [TBL] [Abstract][Full Text] [Related]
12. Lithium Dendrite Suppression and Enhanced Interfacial Compatibility Enabled by an Ex Situ SEI on Li Anode for LAGP-Based All-Solid-State Batteries. Hou G; Ma X; Sun Q; Ai Q; Xu X; Chen L; Li D; Chen J; Zhong H; Li Y; Xu Z; Si P; Feng J; Zhang L; Ding F; Ci L ACS Appl Mater Interfaces; 2018 Jun; 10(22):18610-18618. PubMed ID: 29758163 [TBL] [Abstract][Full Text] [Related]
13. High-Polarity Fluoroalkyl Ether Electrolyte Enables Solvation-Free Li Dong L; Liu Y; Wen K; Chen D; Rao D; Liu J; Yuan B; Dong Y; Wu Z; Liang Y; Yang M; Ma J; Yang C; Xia C; Xia B; Han J; Wang G; Guo Z; He W Adv Sci (Weinh); 2022 Feb; 9(5):e2104699. PubMed ID: 34923779 [TBL] [Abstract][Full Text] [Related]
14. Lithium fluorosulfonate-induced low-resistance interphase boosting low-temperature performance of commercial graphite/LiFePO Zhang Z; Hu J; Hu Y; Wang H; Hu H J Colloid Interface Sci; 2024 Sep; 669():305-313. PubMed ID: 38718584 [TBL] [Abstract][Full Text] [Related]
15. Molecular Design of Mono-Fluorinated Ether-Based Electrolyte for All-Climate Lithium-Ion Batteries and Lithium-Metal Batteries. Xue Y; Wang Y; Zhang H; Kong W; Zhou Y; Kang B; Huang Z; Xiang H Angew Chem Int Ed Engl; 2024 Sep; ():e202414201. PubMed ID: 39300784 [TBL] [Abstract][Full Text] [Related]
16. Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. Jiao X; Wang J; Gao G; Zhang X; Fu C; Wang L; Wang Y; Liu T ACS Appl Mater Interfaces; 2021 Dec; 13(50):60054-60062. PubMed ID: 34879648 [TBL] [Abstract][Full Text] [Related]
17. Promising Cell Configuration for Next-Generation Energy Storage: Li2S/Graphite Battery Enabled by a Solvate Ionic Liquid Electrolyte. Li Z; Zhang S; Terada S; Ma X; Ikeda K; Kamei Y; Zhang C; Dokko K; Watanabe M ACS Appl Mater Interfaces; 2016 Jun; 8(25):16053-62. PubMed ID: 27282172 [TBL] [Abstract][Full Text] [Related]
18. Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO Ren X; Zhang X; Shadike Z; Zou L; Jia H; Cao X; Engelhard MH; Matthews BE; Wang C; Arey BW; Yang XQ; Liu J; Zhang JG; Xu W Adv Mater; 2020 Dec; 32(49):e2004898. PubMed ID: 33150628 [TBL] [Abstract][Full Text] [Related]
19. Engineering Array-Patterned Cathodes and Anodes for Synergistically Enabling High-Performance Lithium Metal Batteries. Wang H; Li J; Huang Y; Li Z ACS Appl Mater Interfaces; 2023 Mar; 15(12):15525-15532. PubMed ID: 36926833 [TBL] [Abstract][Full Text] [Related]
20. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]