These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35973254)

  • 21. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 50C Fast-Charge Li-Ion Batteries using a Graphite Anode.
    Sun C; Ji X; Weng S; Li R; Huang X; Zhu C; Xiao X; Deng T; Fan L; Chen L; Wang X; Wang C; Fan X
    Adv Mater; 2022 Oct; 34(43):e2206020. PubMed ID: 36067055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Suspension electrolyte with modified Li
    Kim MS; Zhang Z; Rudnicki PE; Yu Z; Wang J; Wang H; Oyakhire ST; Chen Y; Kim SC; Zhang W; Boyle DT; Kong X; Xu R; Huang Z; Huang W; Bent SF; Wang LW; Qin J; Bao Z; Cui Y
    Nat Mater; 2022 Apr; 21(4):445-454. PubMed ID: 35039645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Practical High-Voltage Lithium Metal Batteries Enabled by Tuning the Solvation Structure in Weakly Solvating Electrolyte.
    Pham TD; Bin Faheem A; Kim J; Oh HM; Lee KK
    Small; 2022 Apr; 18(14):e2107492. PubMed ID: 35212457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Performance Low-Temperature Lithium Metal Batteries Enabled by Tailored Electrolyte Solvation Structure.
    Zou Y; Cheng F; Lu Y; Xu Y; Fang C; Han J
    Small; 2023 Apr; 19(14):e2203394. PubMed ID: 36732895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Weak-Coordination Electrolyte Enabling Fast Li
    Lin W; Li J; Wang J; Gu K; Li H; Xu Z; Wang K; Wang F; Zhu M; Fan Y; Wang H; Tao G; Liu N; Ding M; Chen S; Wu J; Tang Y
    Small; 2023 Jun; 19(23):e2207093. PubMed ID: 36890773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A "tug-of-war" effect tunes Li-ion transport and enhances the rate capability of lithium metal batteries.
    Zhang H; Zeng Z; Liu M; Ma F; Qin M; Wang X; Wu Y; Lei S; Cheng S; Xie J
    Chem Sci; 2023 Mar; 14(10):2745-2754. PubMed ID: 36908970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward the Practical Use of Cobalt-Free Lithium-Ion Batteries by an Advanced Ether-Based Electrolyte.
    Jia H; Zhang X; Xu Y; Zou L; Kim JM; Gao P; Engelhard MH; Li Q; Niu C; Matthews BE; Lemmon TL; Hu J; Wang C; Xu W
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44339-44347. PubMed ID: 34495631
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced electrochemical properties of LiFePO4 (LFP) cathode using the carboxymethyl cellulose lithium (CMC-Li) as novel binder in lithium-ion battery.
    Qiu L; Shao Z; Wang D; Wang W; Wang F; Wang J
    Carbohydr Polym; 2014 Oct; 111():588-91. PubMed ID: 25037391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constructing a Stable Interface Layer by Tailoring Solvation Chemistry in Carbonate Electrolytes for High-Performance Lithium-Metal Batteries.
    Piao Z; Xiao P; Luo R; Ma J; Gao R; Li C; Tan J; Yu K; Zhou G; Cheng HM
    Adv Mater; 2022 Feb; 34(8):e2108400. PubMed ID: 34859925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promoting Rechargeable Batteries Operated at Low Temperature.
    Dong X; Wang YG; Xia Y
    Acc Chem Res; 2021 Oct; 54(20):3883-3894. PubMed ID: 34622652
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced charge transport properties of an LFP/C/graphite composite as a cathode material for aqueous rechargeable lithium batteries.
    Duan W; Husain M; Li Y; Lashari NUR; Yang Y; Ma C; Zhao Y; Li X
    RSC Adv; 2023 Aug; 13(36):25327-25333. PubMed ID: 37622017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Boosting Fast Charging of Lithium-Metal Batteries via Weak Interactions Between Non-Solvating Solvents and Anions in High-Safety Eutectic Electrolytes.
    Xie L; Liang Y; Wang J; Wu W; Zhang J; Zhang J
    Small; 2024 Dec; 20(49):e2407484. PubMed ID: 39370764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Powerful Protocol Based on Anode-Free Cells Combined with Various Analytical Techniques.
    Hagos TM; Bezabh HK; Huang CJ; Jiang SK; Su WN; Hwang BJ
    Acc Chem Res; 2021 Dec; 54(24):4474-4485. PubMed ID: 34763425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Li
    Liu X; Zarrabeitia M; Mariani A; Gao X; Schütz HM; Fang S; Bizien T; Elia GA; Passerini S
    Small Methods; 2021 Jul; 5(7):e2100168. PubMed ID: 34927996
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries.
    Wu Z; Cai Z; Fang B; Liu M; Wu H; Liu A; Ye F
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25890-25897. PubMed ID: 34043330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simultaneous Stabilization of LiNi
    Zhao W; Zou L; Zheng J; Jia H; Song J; Engelhard MH; Wang C; Xu W; Yang Y; Zhang JG
    ChemSusChem; 2018 Jul; 11(13):2211-2220. PubMed ID: 29717541
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries.
    Li Y; Arnold W; Thapa A; Jasinski JB; Sumanasekera G; Sunkara M; Druffel T; Wang H
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42653-42659. PubMed ID: 32845121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrolyte design for Li-ion batteries under extreme operating conditions.
    Xu J; Zhang J; Pollard TP; Li Q; Tan S; Hou S; Wan H; Chen F; He H; Hu E; Xu K; Yang XQ; Borodin O; Wang C
    Nature; 2023 Feb; 614(7949):694-700. PubMed ID: 36755091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular Simulations of the Microstructure Evolution of Solid Electrolyte Interphase during Cyclic Charging/Discharging.
    Yang PY; Pao CW
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5017-5027. PubMed ID: 33467849
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.