These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 35973274)

  • 61. Macrophage-mediated proteolytic remodeling of the extracellular matrix in atherosclerosis results in neoepitopes: a potential new class of biochemical markers.
    Skjøt-Arkil H; Barascuk N; Register T; Karsdal MA
    Assay Drug Dev Technol; 2010 Oct; 8(5):542-52. PubMed ID: 20662734
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells.
    Robichaud S; Fairman G; Vijithakumar V; Mak E; Cook DP; Pelletier AR; Huard S; Vanderhyden BC; Figeys D; Lavallée-Adam M; Baetz K; Ouimet M
    Autophagy; 2021 Nov; 17(11):3671-3689. PubMed ID: 33590792
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ratiometric Semiconducting Polymer Nanoparticle for Reliable Photoacoustic Imaging of Pneumonia-Induced Vulnerable Atherosclerotic Plaque in Vivo.
    Ma Y; Xu L; Yin B; Shang J; Chen F; Xu J; Song ZL; Nan B; Song G; Zhang XB
    Nano Lett; 2021 May; 21(10):4484-4493. PubMed ID: 33978427
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs.
    Park S; Ahn JW; Jo Y; Kang HY; Kim HJ; Cheon Y; Kim JW; Park Y; Lee S; Park K
    ACS Nano; 2020 Feb; 14(2):1856-1865. PubMed ID: 31909985
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Interference-free Detection of Lipid-laden Atherosclerotic Plaques by 3D Co-registration of Frequency-Domain Differential Photoacoustic and Ultrasound Radar Imaging.
    Choi SSS; Lashkari B; Mandelis A; Weyers JJ; Boyes A; Foster SF; Alves-Kotzev N; Courtney B
    Sci Rep; 2019 Aug; 9(1):12400. PubMed ID: 31455883
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Smooth muscle cell phenotypic switch: implications for foam cell formation.
    Chaabane C; Coen M; Bochaton-Piallat ML
    Curr Opin Lipidol; 2014 Oct; 25(5):374-9. PubMed ID: 25110900
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis.
    Luo Y; Duan H; Qian Y; Feng L; Wu Z; Wang F; Feng J; Yang D; Qin Z; Yan X
    Cell Res; 2017 Mar; 27(3):352-372. PubMed ID: 28084332
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography.
    Chhour P; Naha PC; O'Neill SM; Litt HI; Reilly MP; Ferrari VA; Cormode DP
    Biomaterials; 2016 May; 87():93-103. PubMed ID: 26914700
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Inhibition of Orai1 Store-Operated Calcium Channel Prevents Foam Cell Formation and Atherosclerosis.
    Liang SJ; Zeng DY; Mai XY; Shang JY; Wu QQ; Yuan JN; Yu BX; Zhou P; Zhang FR; Liu YY; Lv XF; Liu J; Ou JS; Qian JS; Zhou JG
    Arterioscler Thromb Vasc Biol; 2016 Apr; 36(4):618-28. PubMed ID: 26916730
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nanoparticle Functionalization with Platelet Membrane Enables Multifactored Biological Targeting and Detection of Atherosclerosis.
    Wei X; Ying M; Dehaini D; Su Y; Kroll AV; Zhou J; Gao W; Fang RH; Chien S; Zhang L
    ACS Nano; 2018 Jan; 12(1):109-116. PubMed ID: 29216423
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Reconstruction of optical absorption coefficient distribution in intravascular photoacoustic imaging.
    Zheng S; Lan Z
    Comput Biol Med; 2018 Jun; 97():37-49. PubMed ID: 29689466
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Magnetic Resonance Imaging of Atherosclerotic Plaque at Clinically Relevant Field Strengths (1T) by Targeting the Integrin α4β1.
    Woodside DG; Tanifum EA; Ghaghada KB; Biediger RJ; Caivano AR; Starosolski ZA; Khounlo S; Bhayana S; Abbasi S; Craft JW; Maxwell DS; Patel C; Stupin IV; Bakthavatsalam D; Market RV; Willerson JT; Dixon RAF; Vanderslice P; Annapragada AV
    Sci Rep; 2018 Feb; 8(1):3733. PubMed ID: 29487319
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Vav Guanine nucleotide exchange factors regulate atherosclerotic lesion development in mice.
    Rahaman SO; Li W; Silverstein RL
    Arterioscler Thromb Vasc Biol; 2013 Sep; 33(9):2053-7. PubMed ID: 23825362
    [TBL] [Abstract][Full Text] [Related]  

  • 74. How Monocytes Contribute to Increased Risk of Atherosclerosis in Virologically-Suppressed HIV-Positive Individuals Receiving Combination Antiretroviral Therapy.
    Jaworowski A; Hearps AC; Angelovich TA; Hoy JF
    Front Immunol; 2019; 10():1378. PubMed ID: 31275317
    [TBL] [Abstract][Full Text] [Related]  

  • 75. 64Cu-Labeled Divalent Cystine Knot Peptide for Imaging Carotid Atherosclerotic Plaques.
    Jiang L; Tu Y; Kimura RH; Habte F; Chen H; Cheng K; Shi H; Gambhir SS; Cheng Z
    J Nucl Med; 2015 Jun; 56(6):939-44. PubMed ID: 25908832
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Piezocatalytic Schottky Junction Treats Atherosclerosis by a Biomimetic Trojan Horse Strategy.
    Cheng J; Pan W; Zheng Y; Zhang J; Chen L; Huang H; Chen Y; Wu R
    Adv Mater; 2024 May; 36(19):e2312102. PubMed ID: 38289723
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Folate-Modified Liposomes Loaded with Telmisartan Enhance Anti-Atherosclerotic Potency for Advanced Atherosclerosis in ApoE
    Fang D; Jin Q; Jin Z; Wang F; Huang L; Yang Y; He Z; Liu Y; Jiang C; Wu J; Song X
    J Biomed Nanotechnol; 2019 Jan; 15(1):42-61. PubMed ID: 30480514
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evaluation of Cholesterol Thickness of Blood Vessels Using Photoacoustic Technology.
    Salih AK; Alwan AH; Opulencia MJC; Uinarni H; Khamidova FM; Atiyah MS; Awadh SA; Hammid AT; Arzehgar Z
    Biomed Res Int; 2023; 2023():2721427. PubMed ID: 37090193
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Mindin deficiency in macrophages protects against foam cell formation and atherosclerosis by targeting LXR-β.
    Zhang C; Qin JJ; Gong FH; Tong JJ; Cheng WL; Wang H; Zhang Y; Zhu X; She ZG; Xia H; Zhu LH
    Clin Sci (Lond); 2018 Jun; 132(11):1199-1213. PubMed ID: 29695588
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Recent insights into atherosclerotic plaque cell autophagy.
    Ni D; Mo Z; Yi G
    Exp Biol Med (Maywood); 2021 Dec; 246(24):2553-2558. PubMed ID: 34407677
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.