BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35973316)

  • 21. Temperature-specific spectral shift of luminescing thermally altered human remains.
    Schariatmadary P; Aalders MCG; Oostra RJ; Krap T
    Int J Legal Med; 2023 Jul; 137(4):1277-1286. PubMed ID: 37178277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Application of the burned bone morphology and DNA technology in human identification].
    Xu GC; Ren F; Hou XW; Yuan LB
    Fa Yi Xue Za Zhi; 2007 Oct; 23(5):370-2, 379. PubMed ID: 18175579
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Luminescence of thermally altered human skeletal remains.
    Krap T; Nota K; Wilk LS; van de Goot FRW; Ruijter JM; Duijst W; Oostra RJ
    Int J Legal Med; 2017 Jul; 131(4):1165-1177. PubMed ID: 28233101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Survival of sharp force trauma in burnt bones: effects of environmental factors.
    Vachirawongsakorn V; Márquez-Grant N; Painter J
    Int J Legal Med; 2023 May; 137(3):809-823. PubMed ID: 36418580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effectiveness of various methods of DNA isolation from bones and teeth of animals exposed to high temperature.
    Grela M; Jakubczak A; Kowalczyk M; Listos P; Gryzińska M
    J Forensic Leg Med; 2021 Feb; 78():102131. PubMed ID: 33561692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of two fire victims by comparative nuclear DNA typing of skeletal remains and stored umbilical tissues.
    Calacal GC; De Ungria MC; Delfin FC; Lara MC; Magtanong DL; Fortun R
    Am J Forensic Med Pathol; 2003 Jun; 24(2):148-52. PubMed ID: 12773850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.
    Lewis L; Christensen AM
    J Forensic Sci; 2016 Mar; 61(2):439-441. PubMed ID: 27404616
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The forensic evaluation of burned skeletal remains: a synthesis.
    Ubelaker DH
    Forensic Sci Int; 2009 Jan; 183(1-3):1-5. PubMed ID: 19010619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of weather conditions on burnt bone fragmentation.
    Waterhouse K
    J Forensic Leg Med; 2013 Jul; 20(5):489-95. PubMed ID: 23756520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determining Volumetric Shrinkage Trends of Burnt Bone Using Micro-CT.
    Ellingham S; A Sandholzer M
    J Forensic Sci; 2020 Jan; 65(1):196-199. PubMed ID: 31397893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The potential of X-ray diffraction in the analysis of burned remains from forensic contexts.
    Piga G; Thompson TJ; Malgosa A; Enzo S
    J Forensic Sci; 2009 May; 54(3):534-9. PubMed ID: 19368627
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating the postmortem interval of human skeletal remains by analyzing their fluorescence at 365 and 490 nm.
    Sterzik V; Holz F; Ohlwärther TEN; Thali M; Birngruber CG
    Int J Legal Med; 2018 May; 132(3):933-938. PubMed ID: 29256137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dead weight: Validation of mass regression equations on experimentally burned skeletal remains to assess skeleton completeness.
    Gonçalves D; d'Oliveira Coelho J; Amarante A; Makhoul C; Oliveira-Santos I; Navega D; Cunha E
    Sci Justice; 2018 Jan; 58(1):2-6. PubMed ID: 29332692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of victim age on burnt bone fragmentation: implications for remains recovery.
    Waterhouse K
    Forensic Sci Int; 2013 Sep; 231(1-3):409.e1-7. PubMed ID: 23683947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The taphonomy of human remains in a glacial environment.
    Pilloud MA; Megyesi MS; Truffer M; Congram D
    Forensic Sci Int; 2016 Apr; 261():161.e1-8. PubMed ID: 26917542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of different methods for DNA extraction from human burnt bones and the generation of genetic profiles for identification.
    Uzair A; Rasool N; Wasim M
    Med Sci Law; 2017 Oct; 57(4):159-166. PubMed ID: 28820349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of skeletal changes after post-mortem exposure to fire as an indicator of decomposition stage.
    Keough N; L'Abbé EN; Steyn M; Pretorius S
    Forensic Sci Int; 2015 Jan; 246():17-24. PubMed ID: 25460103
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discovering a double murder through skeletal remains: A case report.
    Manzoni S; Ossoli A; Cortellini V; Verzeletti A
    Med Sci Law; 2019 Jan; 59(1):9-16. PubMed ID: 30419771
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Progress in individual identification of burned bones].
    Liu HD; Ren F; Xing RX; Pei LG
    Fa Yi Xue Za Zhi; 2009 Feb; 25(1):61-2. PubMed ID: 19397217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cytoskeletal and extracellular matrix proteins resist the burning of bones.
    Díaz-Martín RD; Ambrosio JR; Flores RM; Gonzáles-Pozos S; Valencia-Caballero L
    Forensic Sci Int; 2019 Dec; 305():110027. PubMed ID: 31704515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.