These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 35973411)
1. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold. Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic Device with an Oxygen Gradient Generator for Investigating Effects of Specific Hypoxia Conditions on Responses of Tumor Cells. Ding L; Sun D; Wang Z; Gao T; Wei J; Li X; Chen L; Liu B; Li J; Liu C Langmuir; 2024 Sep; 40(37):19316-19323. PubMed ID: 39217623 [TBL] [Abstract][Full Text] [Related]
3. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture. Li K; Wang D; Zhao K; Song K; Liang J Talanta; 2020 May; 211():120750. PubMed ID: 32070610 [TBL] [Abstract][Full Text] [Related]
4. Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices. Chen C; Mehl BT; Sell SA; Martin RS Analyst; 2016 Sep; 141(18):5311-20. PubMed ID: 27373715 [TBL] [Abstract][Full Text] [Related]
5. Development of a plasma-based 3D printing system for enhancing the biocompatibility of 3D scaffold. Kim SH; Lee JS; Lee SJ; Nah H; Min SJ; Moon HJ; Bang JB; Kim HJ; Kim WJ; Kwon IK; Heo DN Biofabrication; 2023 Jun; 15(3):. PubMed ID: 37336204 [TBL] [Abstract][Full Text] [Related]
6. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion. Mehta V; Vilikkathala Sudhakaran S; Rath SN ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888 [TBL] [Abstract][Full Text] [Related]
7. 3D printed devices with integrated collagen scaffolds for cell culture studies including transepithelial/transendothelial electrical resistance (TEER) measurements. Cenhrang K; Robart L; Castiaux AD; Martin RS Anal Chim Acta; 2022 Aug; 1221():340166. PubMed ID: 35934386 [TBL] [Abstract][Full Text] [Related]
8. Electrohydrodynamic jet 3D printing in biomedical applications. Wu Y Acta Biomater; 2021 Jul; 128():21-41. PubMed ID: 33905945 [TBL] [Abstract][Full Text] [Related]
9. A microfluidic chip containing multiple 3D nanofibrous scaffolds for culturing human pluripotent stem cells. Wertheim L; Shapira A; Amir RJ; Dvir T Nanotechnology; 2018 Apr; 29(13):13LT01. PubMed ID: 29384490 [TBL] [Abstract][Full Text] [Related]
10. 3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering. Zhu Q; Hamilton M; Vasquez B; He M Lab Chip; 2019 Jul; 19(14):2362-2372. PubMed ID: 31214669 [TBL] [Abstract][Full Text] [Related]
11. Advancing Tissue Culture with Light-Driven 3D-Printed Microfluidic Devices. Li X; Wang M; Davis TP; Zhang L; Qiao R Biosensors (Basel); 2024 Jun; 14(6):. PubMed ID: 38920605 [TBL] [Abstract][Full Text] [Related]
12. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Cui C; Kim DO; Pack MY; Han B; Han L; Sun Y; Han LH Biofabrication; 2020 Aug; 12(4):045018. PubMed ID: 32650325 [TBL] [Abstract][Full Text] [Related]
13. Multiscale Anisotropic Scaffold Integrating 3D Printing and Electrospinning Techniques as a Heart-on-a-Chip Platform for Evaluating Drug-Induced Cardiotoxicity. Liu S; Wang Z; Chen X; Han M; Xu J; Li T; Yu L; Qin M; Long M; Li M; Zhang H; Li Y; Wang L; Huang W; Wu Y Adv Healthc Mater; 2023 Sep; 12(24):e2300719. PubMed ID: 37155581 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Operation of Microfluidic Hanging-Drop Networks. Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214 [TBL] [Abstract][Full Text] [Related]
15. Silkworm-inspired electrohydrodynamic jet 3D printing of composite scaffold with ordered cell scale fibers for bone tissue engineering. Li K; Zhang F; Wang D; Qiu Q; Liu M; Yu A; Cui Y Int J Biol Macromol; 2021 Mar; 172():124-132. PubMed ID: 33418047 [TBL] [Abstract][Full Text] [Related]
16. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382 [TBL] [Abstract][Full Text] [Related]
17. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Gallegos-Martínez S; Choy-Buentello D; Pérez-Álvarez KA; Lara-Mayorga IM; Aceves-Colin AE; Zhang YS; Trujillo-de Santiago G; Álvarez MM Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38866003 [TBL] [Abstract][Full Text] [Related]
18. Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration. Han J; Park S; Kim JE; Park B; Hong Y; Lim JW; Jeong S; Son H; Kim HB; Seonwoo H; Jang KJ; Chung JH ACS Biomater Sci Eng; 2023 Feb; 9(2):968-977. PubMed ID: 36701173 [TBL] [Abstract][Full Text] [Related]
19. Insert-based microfluidics for 3D cell culture with analysis. Chen C; Townsend AD; Hayter EA; Birk HM; Sell SA; Martin RS Anal Bioanal Chem; 2018 May; 410(12):3025-3035. PubMed ID: 29536154 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications. Attalla R; Ling C; Selvaganapathy P Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]