BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35973426)

  • 1. Saturation of the mitochondrial NADH shuttles drives aerobic glycolysis in proliferating cells.
    Wang Y; Stancliffe E; Fowle-Grider R; Wang R; Wang C; Schwaiger-Haber M; Shriver LP; Patti GJ
    Mol Cell; 2022 Sep; 82(17):3270-3283.e9. PubMed ID: 35973426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate-aspartate shuttle promotes l-lactate oxidation in mitochondria.
    Altinok O; Poggio JL; Stein DE; Bowne WB; Shieh AC; Snyder NW; Orynbayeva Z
    J Cell Physiol; 2020 Mar; 235(3):2569-2581. PubMed ID: 31490559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The malate-aspartate shuttle is important for de novo serine biosynthesis.
    Broeks MH; Meijer NWF; Westland D; Bosma M; Gerrits J; German HM; Ciapaite J; van Karnebeek CDM; Wanders RJA; Zwartkruis FJT; Verhoeven-Duif NM; Jans JJM
    Cell Rep; 2023 Sep; 42(9):113043. PubMed ID: 37647199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies.
    Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME
    J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle.
    Barron JT; Gu L; Parrillo JE
    J Mol Cell Cardiol; 1998 Aug; 30(8):1571-9. PubMed ID: 9737943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis.
    Wang C; Chen H; Zhang M; Zhang J; Wei X; Ying W
    Cancer Lett; 2016 Aug; 378(1):1-7. PubMed ID: 27157912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells.
    Grivell AR; Korpelainen EI; Williams CJ; Berry MN
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles.
    Lumeng L; Bremer J; Davis EJ
    J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Ca
    Pérez-Liébana I; Juaristi I; González-Sánchez P; González-Moreno L; Rial E; Podunavac M; Zakarian A; Molgó J; Vallejo-Illarramendi A; Mosqueira-Martín L; Lopez de Munain A; Pardo B; Satrústegui J; Del Arco A
    J Neurosci; 2022 May; 42(19):3879-3895. PubMed ID: 35387872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mitochondrial NADH shuttle system is a targetable vulnerability for Group 3 medulloblastoma in a hypoxic microenvironment.
    Contenti J; Guo Y; Mazzu A; Irondelle M; Rouleau M; Lago C; Leva G; Tiberi L; Ben-Sahra I; Bost F; Mazure NM
    Cell Death Dis; 2023 Nov; 14(11):784. PubMed ID: 38036520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inborn disorders of the malate aspartate shuttle.
    Broeks MH; van Karnebeek CDM; Wanders RJA; Jans JJM; Verhoeven-Duif NM
    J Inherit Metab Dis; 2021 Jul; 44(4):792-808. PubMed ID: 33990986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells.
    Greenhouse WV; Lehninger AL
    Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells.
    Sánchez-Jiménez F; Martínez P; Núñez de Castro I; Olavarría JS
    Biochimie; 1985 Feb; 67(2):259-64. PubMed ID: 4005310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles.
    Rupert BE; Segar JL; Schutte BC; Scholz TD
    J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion.
    Stamenkovic JA; Andersson LE; Adriaenssens AE; Bagge A; Sharoyko VV; Gribble F; Reimann F; Wollheim CB; Mulder H; Spégel P
    Biochem J; 2015 May; 468(1):49-63. PubMed ID: 25731850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism.
    Alshawi A; Agius L
    J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of neuronal energy metabolism by calcium: Role of MCU and Aralar/malate-aspartate shuttle.
    Del Arco A; González-Moreno L; Pérez-Liébana I; Juaristi I; González-Sánchez P; Contreras L; Pardo B; Satrústegui J
    Biochim Biophys Acta Mol Cell Res; 2023 Jun; 1870(5):119468. PubMed ID: 36997074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes.
    Gevi F; Campolo F; Naro F; Zolla L
    Biochem Pharmacol; 2017 Mar; 127():60-70. PubMed ID: 28017777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C/EBPβ-LIP mediated activation of the malate-aspartate shuttle sensitizes cells to glycolysis inhibition.
    Ackermann T; Zuidhof HR; Müller C; Kortman G; Rutten MGS; Broekhuis MJC; Zaini MA; Hartleben G; Calkhoven CF
    Mol Metab; 2023 Jun; 72():101726. PubMed ID: 37062524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluctuations in Cytosolic Calcium Regulate the Neuronal Malate-Aspartate NADH Shuttle: Implications for Neuronal Energy Metabolism.
    Satrústegui J; Bak LK
    Neurochem Res; 2015 Dec; 40(12):2425-30. PubMed ID: 26138554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.