These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The malate-aspartate shuttle is important for de novo serine biosynthesis. Broeks MH; Meijer NWF; Westland D; Bosma M; Gerrits J; German HM; Ciapaite J; van Karnebeek CDM; Wanders RJA; Zwartkruis FJT; Verhoeven-Duif NM; Jans JJM Cell Rep; 2023 Sep; 42(9):113043. PubMed ID: 37647199 [TBL] [Abstract][Full Text] [Related]
4. Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. Zhou L; Stanley WC; Saidel GM; Yu X; Cabrera ME J Physiol; 2005 Dec; 569(Pt 3):925-37. PubMed ID: 16223766 [TBL] [Abstract][Full Text] [Related]
6. Malate-aspartate shuttle inhibitor aminooxyacetic acid leads to decreased intracellular ATP levels and altered cell cycle of C6 glioma cells by inhibiting glycolysis. Wang C; Chen H; Zhang M; Zhang J; Wei X; Ying W Cancer Lett; 2016 Aug; 378(1):1-7. PubMed ID: 27157912 [TBL] [Abstract][Full Text] [Related]
7. Substrate-dependent utilization of the glycerol 3-phosphate or malate/aspartate redox shuttles by Ehrlich ascites cells. Grivell AR; Korpelainen EI; Williams CJ; Berry MN Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):665-71. PubMed ID: 7654209 [TBL] [Abstract][Full Text] [Related]
8. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L; Bremer J; Davis EJ J Biol Chem; 1976 Jan; 251(2):277-84. PubMed ID: 1245472 [TBL] [Abstract][Full Text] [Related]
9. A Ca Pérez-Liébana I; Juaristi I; González-Sánchez P; González-Moreno L; Rial E; Podunavac M; Zakarian A; Molgó J; Vallejo-Illarramendi A; Mosqueira-Martín L; Lopez de Munain A; Pardo B; Satrústegui J; Del Arco A J Neurosci; 2022 May; 42(19):3879-3895. PubMed ID: 35387872 [TBL] [Abstract][Full Text] [Related]
10. The mitochondrial NADH shuttle system is a targetable vulnerability for Group 3 medulloblastoma in a hypoxic microenvironment. Contenti J; Guo Y; Mazzu A; Irondelle M; Rouleau M; Lago C; Leva G; Tiberi L; Ben-Sahra I; Bost F; Mazure NM Cell Death Dis; 2023 Nov; 14(11):784. PubMed ID: 38036520 [TBL] [Abstract][Full Text] [Related]
11. Inborn disorders of the malate aspartate shuttle. Broeks MH; van Karnebeek CDM; Wanders RJA; Jans JJM; Verhoeven-Duif NM J Inherit Metab Dis; 2021 Jul; 44(4):792-808. PubMed ID: 33990986 [TBL] [Abstract][Full Text] [Related]
12. Magnitude of malate-aspartate reduced nicotinamide adenine dinucleotide shuttle activity in intact respiring tumor cells. Greenhouse WV; Lehninger AL Cancer Res; 1977 Nov; 37(11):4173-81. PubMed ID: 198130 [TBL] [Abstract][Full Text] [Related]
13. The function of redox shuttles during aerobic glycolysis in two strains of Ehrlich ascites tumor cells. Sánchez-Jiménez F; Martínez P; Núñez de Castro I; Olavarría JS Biochimie; 1985 Feb; 67(2):259-64. PubMed ID: 4005310 [TBL] [Abstract][Full Text] [Related]
14. Metabolic adaptation of the hypertrophied heart: role of the malate/aspartate and alpha-glycerophosphate shuttles. Rupert BE; Segar JL; Schutte BC; Scholz TD J Mol Cell Cardiol; 2000 Dec; 32(12):2287-97. PubMed ID: 11113004 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion. Stamenkovic JA; Andersson LE; Adriaenssens AE; Bagge A; Sharoyko VV; Gribble F; Reimann F; Wollheim CB; Mulder H; Spégel P Biochem J; 2015 May; 468(1):49-63. PubMed ID: 25731850 [TBL] [Abstract][Full Text] [Related]
16. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. Alshawi A; Agius L J Biol Chem; 2019 Feb; 294(8):2839-2853. PubMed ID: 30591586 [TBL] [Abstract][Full Text] [Related]
17. Regulation of neuronal energy metabolism by calcium: Role of MCU and Aralar/malate-aspartate shuttle. Del Arco A; González-Moreno L; Pérez-Liébana I; Juaristi I; González-Sánchez P; Contreras L; Pardo B; Satrústegui J Biochim Biophys Acta Mol Cell Res; 2023 Jun; 1870(5):119468. PubMed ID: 36997074 [TBL] [Abstract][Full Text] [Related]
18. The cardioprotective effect of sildenafil is mediated by the activation of malate dehydrogenase and an increase in the malate-aspartate shuttle in cardiomyocytes. Gevi F; Campolo F; Naro F; Zolla L Biochem Pharmacol; 2017 Mar; 127():60-70. PubMed ID: 28017777 [TBL] [Abstract][Full Text] [Related]