BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 3597389)

  • 1. Hydroxamate-induced spectral perturbations of cobalt Aeromonas aminopeptidase.
    Wilkes SH; Prescott JM
    J Biol Chem; 1987 Jun; 262(18):8621-5. PubMed ID: 3597389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereospecificity of amino acid hydroxamate inhibition of aminopeptidases.
    Wilkes SH; Prescott JM
    J Biol Chem; 1983 Nov; 258(22):13517-21. PubMed ID: 6643439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified activity of Aeromonas aminopeptidase: metal ion substitutions and role of substrates.
    Bayliss ME; Prescott JM
    Biochemistry; 1986 Dec; 25(24):8113-7. PubMed ID: 3801458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopically distinct cobalt(II) sites in heterodimetallic forms of the aminopeptidase from Aeromonas proteolytica: characterization of substrate binding.
    Bennett B; Holz RC
    Biochemistry; 1997 Aug; 36(32):9837-46. PubMed ID: 9245416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-binding sites.
    Prescott JM; Wagner FW; Holmquist B; Vallee BL
    Biochemistry; 1985 Sep; 24(20):5350-6. PubMed ID: 4074699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of the aminopeptidase from Aeromonas proteolytica by L-leucinethiol: kinetic and spectroscopic characterization of a slow, tight-binding inhibitor-enzyme complex.
    Bienvenue DL; Bennett B; Holz RC
    J Inorg Biochem; 2000 Jan; 78(1):43-54. PubMed ID: 10714704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The slow, tight binding of bestatin and amastatin to aminopeptidases.
    Wilkes SH; Prescott JM
    J Biol Chem; 1985 Oct; 260(24):13154-62. PubMed ID: 2865258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic and thermodynamic characterization of the E151D and E151A altered leucine aminopeptidases from Aeromonas proteolytica.
    Bzymek KP; Swierczek SI; Bennett B; Holz RC
    Inorg Chem; 2005 Nov; 44(23):8574-80. PubMed ID: 16270998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the Aeromonas proteolytica aminopeptidase complexed with a hydroxamate inhibitor. Involvement in catalysis of Glu151 and two zinc ions of the co-catalytic unit.
    Chevrier B; D'Orchymont H; Schalk C; Tarnus C; Moras D
    Eur J Biochem; 1996 Apr; 237(2):393-8. PubMed ID: 8647077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of aminopeptidases by N-aminoacyl-O-4-nitrobenzoyl hydroxamates.
    Demuth HU; Stöckel A; Schierhorn A; Fittkau S; Kirschke H; Brömme D
    Biochim Biophys Acta; 1993 Oct; 1202(2):265-70. PubMed ID: 8399389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of leucine aminopeptidase by amino acid hydroxamates.
    Chan WW; Dennis P; Demmer W; Brand K
    J Biol Chem; 1982 Jul; 257(14):7955-7. PubMed ID: 7085655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxamates and aliphatic boronic acids: marker inhibitors for aminopeptidase.
    Baker JO; Wilkes SH; Bayliss ME; Prescott JM
    Biochemistry; 1983 Apr; 22(9):2098-103. PubMed ID: 6860652
    [No Abstract]   [Full Text] [Related]  

  • 13. Hydrolysis of thionopeptides by the aminopeptidase from Aeromonas proteolytica: insight into substrate binding.
    Bienvenue DL; Gilner D; Holz RC
    Biochemistry; 2002 Mar; 41(11):3712-9. PubMed ID: 11888288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow-binding inhibition of the aminopeptidase from Aeromonas proteolytica by peptide thiols: synthesis and spectroscopic characterization.
    Huntington KM; Bienvenue DL; Wei Y; Bennett B; Holz RC; Pei D
    Biochemistry; 1999 Nov; 38(47):15587-96. PubMed ID: 10569943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies on the aminopeptidase from Aeromonas proteolytica: a two-metal ion mechanism for peptide hydrolysis.
    Chen G; Edwards T; D'souza VM; Holz RC
    Biochemistry; 1997 Apr; 36(14):4278-86. PubMed ID: 9100023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specificity of Aeromonas aminopeptidase toward amino acid amides and dipeptides.
    Wagner FW; Wilkes SH; Prescott JM
    J Biol Chem; 1972 Feb; 247(4):1208-10. PubMed ID: 5010066
    [No Abstract]   [Full Text] [Related]  

  • 17. Hydroxamic acids as potent inhibitors of Fe(II) and Mn(II) E. coli methionine aminopeptidase: biological activities and X-ray structures of oxazole hydroxamate-EcMetAP-Mn complexes.
    Huguet F; Melet A; Alves de Sousa R; Lieutaud A; Chevalier J; Maigre L; Deschamps P; Tomas A; Leulliot N; Pages JM; Artaud I
    ChemMedChem; 2012 Jun; 7(6):1020-30. PubMed ID: 22489069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transition-state-analog inhibitor influences zinc-binding by Aeromonas aminopeptidase.
    Baker JO; Prescott JM
    Biochem Biophys Res Commun; 1985 Aug; 130(3):1154-60. PubMed ID: 4026862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel dizinc bridged hydroxamate model for hydroxamate inhibited zinc hydrolases.
    Brown DA; Errington W; Fitzpatrick NJ; Glass WK; Kemp TJ; Nimir H; Ryan AT
    Chem Commun (Camb); 2002 Jun; (11):1210-1. PubMed ID: 12109086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment.
    Kuzuya K; Inouye K
    J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.