BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35974335)

  • 1. PredictiveNetwork: predictive gene network estimation with application to gastric cancer drug response-predictive network analysis.
    Park H; Imoto S; Miyano S
    BMC Bioinformatics; 2022 Aug; 23(1):342. PubMed ID: 35974335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Regulatory Network-Classifier: Gene Regulatory Network-Based Classifier and Its Applications to Gastric Cancer Drug (5-Fluorouracil) Marker Identification.
    Park H; Imoto S; Miyano S
    J Comput Biol; 2023 Feb; 30(2):223-243. PubMed ID: 36450117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unveiling Gene Regulatory Networks That Characterize Difference of Molecular Interplays Between Gastric Cancer Drug Sensitive and Resistance Cell Lines.
    Park H
    J Comput Biol; 2024 Mar; 31(3):257-274. PubMed ID: 38394313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification.
    Park H; Imoto S; Miyano S
    PLoS One; 2023; 18(8):e0286044. PubMed ID: 37610997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks.
    Park H; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2022; 17(5):e0261630. PubMed ID: 35584089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering Molecular Mechanisms of Drug Resistance via Network-Constrained Common Structure Identification.
    Park H; Yamaguchi R; Imoto S; Miyano S
    J Comput Biol; 2022 Mar; 29(3):257-275. PubMed ID: 35073162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive NetworkProfiler for Identifying Cancer Characteristic-Specific Gene Regulatory Networks.
    Park H; Shimamura T; Imoto S; Miyano S
    J Comput Biol; 2018 Feb; 25(2):130-145. PubMed ID: 29053381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets.
    Park H; Imoto S; Miyano S
    PLoS One; 2015; 10(11):e0141869. PubMed ID: 26544691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Adaptive Penalized Logistic Regression for Uncovering Biomarker Associated with Anti-Cancer Drug Sensitivity.
    Park H; Shiraishi Y; Imoto S; Miyano S
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):771-782. PubMed ID: 27164605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global gene network exploration based on explainable artificial intelligence approach.
    Park H; Maruhashi K; Yamaguchi R; Imoto S; Miyano S
    PLoS One; 2020; 15(11):e0241508. PubMed ID: 33156825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational Tactics for Precision Cancer Network Biology.
    Park H; Miyano S
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene's co-expression network and experimental validation of molecular markers associated with the drug resistance of gastric cancer.
    Qi W; Zhang Q
    Biomark Med; 2020 Jun; 14(9):761-773. PubMed ID: 32715733
    [No Abstract]   [Full Text] [Related]  

  • 13. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Gene Regulatory Network Analysis between Azacitidine-Sensitive and -Resistant Cell Lines.
    Park H; Miyano S
    Int J Mol Sci; 2024 Mar; 25(6):. PubMed ID: 38542276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction-Based Feature Selection for Uncovering Cancer Driver Genes Through Copy Number-Driven Expression Level.
    Park H; Niida A; Imoto S; Miyano S
    J Comput Biol; 2017 Feb; 24(2):138-152. PubMed ID: 27759426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data.
    Chen BS; Li CW
    BMC Syst Biol; 2016 Feb; 10():18. PubMed ID: 26897165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of hub genes and construction of an mRNA-miRNA-lncRNA network of gastric carcinoma using integrated bioinformatics analysis.
    Wei G; Dong Y; He Z; Qiu H; Wu Y; Chen Y
    PLoS One; 2021; 16(12):e0261728. PubMed ID: 34968391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs.
    Xie X; Wang F; Wang G; Zhu W; Du X; Wang H
    Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.