These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Brownian motion in inhomogeneous suspensions. Yang M; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630 [TBL] [Abstract][Full Text] [Related]
4. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
5. Diffusion in Homogeneous and in Inhomogeneous Media: A New Unified Approach. Mercier Franco LF; Castier M; Economou IG J Chem Theory Comput; 2016 Nov; 12(11):5247-5255. PubMed ID: 27673372 [TBL] [Abstract][Full Text] [Related]
6. First-passage fingerprints of water diffusion near glutamine surfaces. Belousov R; Qaisrani MN; Hassanali A; Roldán É Soft Matter; 2020 Oct; 16(40):9202-9216. PubMed ID: 32510065 [TBL] [Abstract][Full Text] [Related]
7. Langevin dynamics in inhomogeneous media: re-examining the Itô-Stratonovich dilemma. Farago O; Grønbech-Jensen N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013301. PubMed ID: 24580354 [TBL] [Abstract][Full Text] [Related]
8. Solution of Fokker-Planck equation for a broad class of drift and diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):012102. PubMed ID: 21867236 [TBL] [Abstract][Full Text] [Related]
9. How Local and Average Particle Diffusivities of Inhomogeneous Fluids Depend on Microscopic Dynamics. Bollinger JA; Jain A; Truskett TM J Phys Chem B; 2015 Jul; 119(29):9103-13. PubMed ID: 25350488 [TBL] [Abstract][Full Text] [Related]
10. Deformed Fokker-Planck equation: Inhomogeneous medium with a position-dependent mass. da Costa BG; Gomez IS; Borges EP Phys Rev E; 2020 Dec; 102(6-1):062105. PubMed ID: 33465979 [TBL] [Abstract][Full Text] [Related]
11. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices. Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716 [TBL] [Abstract][Full Text] [Related]
12. Diffusivity interfaces in lattice Monte Carlo simulations: Modeling inhomogeneous delivery and release systems. Ignacio M; Bagheri M; Chubynsky MV; de Haan HW; Slater GW Phys Rev E; 2022 Jun; 105(6-1):064135. PubMed ID: 35854606 [TBL] [Abstract][Full Text] [Related]
13. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes. Anderson J; Moradi S; Rafiq T Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849 [TBL] [Abstract][Full Text] [Related]
14. Nonlinear inhomogeneous Fokker-Planck equation within a generalized Stratonovich prescription. Arenas ZG; Barci DG; Tsallis C Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032118. PubMed ID: 25314406 [TBL] [Abstract][Full Text] [Related]
15. Relativistic Langevin dynamics in expanding media. He M; van Hees H; Gossiaux PB; Fries RJ; Rapp R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032138. PubMed ID: 24125244 [TBL] [Abstract][Full Text] [Related]
16. Nonparametric estimates of drift and diffusion profiles via Fokker-Planck algebra. Lund SP; Hubbard JB; Halter M J Phys Chem B; 2014 Nov; 118(44):12743-9. PubMed ID: 25308384 [TBL] [Abstract][Full Text] [Related]
17. Homogenization of Continuum-Scale Transport Properties from Molecular Dynamics Simulations: An Application to Aqueous-Phase Methane Diffusion in Silicate Channels. Pace T; Rahmaninejad H; Sun B; Kekenes-Huskey PM J Phys Chem B; 2021 Oct; 125(41):11520-11533. PubMed ID: 34618464 [TBL] [Abstract][Full Text] [Related]
18. Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):020101. PubMed ID: 16196534 [TBL] [Abstract][Full Text] [Related]
19. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
20. Multivariate Markov processes for stochastic systems with delays: application to the stochastic Gompertz model with delay. Frank TD Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 1):011914. PubMed ID: 12241391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]