These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35974529)

  • 1. Anisotropic active Brownian particle with a fluctuating propulsion force.
    Thiffeault JL; Guo J
    Phys Rev E; 2022 Jul; 106(1):L012603. PubMed ID: 35974529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments.
    Sprenger AR; Fernandez-Rodriguez MA; Alvarez L; Isa L; Wittkowski R; Löwen H
    Langmuir; 2020 Jun; 36(25):7066-7073. PubMed ID: 31975603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can the self-propulsion of anisotropic microswimmers be described by using forces and torques?
    ten Hagen B; Wittkowski R; Takagi D; Kümmel F; Bechinger C; Löwen H
    J Phys Condens Matter; 2015 May; 27(19):194110. PubMed ID: 25923010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active Brownian particle in homogeneous media of different viscosities: numerical simulations.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a self-propelled particle with rotational inertia.
    Lisin EA; Vaulina OS; Lisina II; Petrov OF
    Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: Experiment versus theory.
    Campbell AI; Wittkowski R; Ten Hagen B; Löwen H; Ebbens SJ
    J Chem Phys; 2017 Aug; 147(8):084905. PubMed ID: 28863518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel.
    Khatri N; Kapral R
    J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effective temperature for the thermal fluctuations in hot Brownian motion.
    Srivastava M; Chakraborty D
    J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers.
    Wittkowski R; Löwen H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationary states of an active Brownian particle in a harmonic trap.
    Nakul U; Gopalakrishnan M
    Phys Rev E; 2023 Aug; 108(2-1):024121. PubMed ID: 37723685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ratcheting of Brownian swimmers in periodically corrugated channels: a reduced Fokker-Planck approach.
    Yariv E; Schnitzer O
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032115. PubMed ID: 25314403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entropy production of a Brownian ellipsoid in the overdamped limit.
    Marino R; Eichhorn R; Aurell E
    Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of a magnetic active Brownian particle under a uniform magnetic field.
    Vidal-Urquiza GC; Córdova-Figueroa UM
    Phys Rev E; 2017 Nov; 96(5-1):052607. PubMed ID: 29347786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode-coupling theory for tagged-particle motion of active Brownian particles.
    Reichert J; Mandal S; Voigtmann T
    Phys Rev E; 2021 Oct; 104(4-1):044608. PubMed ID: 34781467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport coefficients in dense active Brownian particle systems: mode-coupling theory and simulation results.
    Reichert J; Granz LF; Voigtmann T
    Eur Phys J E Soft Matter; 2021 Mar; 44(3):27. PubMed ID: 33704593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport and phase separation of active Brownian particles in fluctuating environments.
    Khadem SMJ; Siboni NH; Klapp SHL
    Phys Rev E; 2021 Dec; 104(6-1):064615. PubMed ID: 35030915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noise and diffusion of a vibrated self-propelled granular particle.
    Walsh L; Wagner CG; Schlossberg S; Olson C; Baskaran A; Menon N
    Soft Matter; 2017 Dec; 13(47):8964-8968. PubMed ID: 29152630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.