These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 35974580)
1. Multiphase curved boundary condition in lattice Boltzmann method. Yao Y; Liu Y; Zhong X; Wen B Phys Rev E; 2022 Jul; 106(1-2):015307. PubMed ID: 35974580 [TBL] [Abstract][Full Text] [Related]
2. Choice of no-slip curved boundary condition for lattice Boltzmann simulations of high-Reynolds-number flows. Sanjeevi SKP; Zarghami A; Padding JT Phys Rev E; 2018 Apr; 97(4-1):043305. PubMed ID: 29758688 [TBL] [Abstract][Full Text] [Related]
3. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Li Q; Yu Y; Luo KH Phys Rev E; 2019 Nov; 100(5-1):053313. PubMed ID: 31869872 [TBL] [Abstract][Full Text] [Related]
4. Improved partially saturated method for the lattice Boltzmann pseudopotential multicomponent flows. Wang G; D'Ortona U; Guichardon P Phys Rev E; 2023 Mar; 107(3-2):035301. PubMed ID: 37072946 [TBL] [Abstract][Full Text] [Related]
5. Simplified wetting boundary scheme in phase-field lattice Boltzmann model for wetting phenomena on curved boundaries. Zhang S; Tang J; Wu H Phys Rev E; 2023 Aug; 108(2-2):025303. PubMed ID: 37723684 [TBL] [Abstract][Full Text] [Related]
6. Alternative curved-boundary treatment for the lattice Boltzmann method and its application in simulation of flow and potential fields. Mohammadipoor OR; Niazmand H; Mirbozorgi SA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013309. PubMed ID: 24580362 [TBL] [Abstract][Full Text] [Related]
7. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls. Wang L; Tao S; Meng X; Zhang K; Lu G Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558 [TBL] [Abstract][Full Text] [Related]
8. Contact Angle Measurement on Curved Wetting Surfaces in Multiphase Lattice Boltzmann Method. Liu Y; Yao Y; Li Q; Zhong X; He B; Wen B Langmuir; 2023 Feb; 39(8):2974-2984. PubMed ID: 36787627 [TBL] [Abstract][Full Text] [Related]
9. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries. Silva G Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme. Ginzburg I Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489 [TBL] [Abstract][Full Text] [Related]
11. Boundary scheme for linear heterogeneous surface reactions in the lattice Boltzmann method. Meng X; Guo Z Phys Rev E; 2016 Nov; 94(5-1):053307. PubMed ID: 27967133 [TBL] [Abstract][Full Text] [Related]
12. Improved curved-boundary scheme for lattice Boltzmann simulation of microscale gas flow with second-order slip condition. Dai W; Wu H; Liu Z; Zhang S Phys Rev E; 2022 Feb; 105(2-2):025310. PubMed ID: 35291094 [TBL] [Abstract][Full Text] [Related]
13. Alternative wetting boundary condition for the chemical-potential-based free-energy lattice Boltzmann model. Yu Y; Li Q; Huang RZ Phys Rev E; 2021 Jul; 104(1-2):015303. PubMed ID: 34412207 [TBL] [Abstract][Full Text] [Related]
14. General curved boundary treatment for two- and three-dimensional stationary and moving walls in flow and nonflow lattice Boltzmann simulations. Mohammadipour OR; Succi S; Niazmand H Phys Rev E; 2018 Aug; 98(2-1):023304. PubMed ID: 30253495 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional pseudopotential lattice Boltzmann model for multiphase flows at high density ratio. Wu S; Chen Y; Chen LQ Phys Rev E; 2020 Nov; 102(5-1):053308. PubMed ID: 33327084 [TBL] [Abstract][Full Text] [Related]
16. Comparative investigation of a lattice Boltzmann boundary treatment of multiphase mass transport with heterogeneous chemical reactions. Yang JY; Dai XY; Xu QH; Liu ZY; Shi L Phys Rev E; 2022 May; 105(5-2):055302. PubMed ID: 35706296 [TBL] [Abstract][Full Text] [Related]
17. Boundary condition for lattice Boltzmann modeling of microscale gas flows with curved walls in the slip regime. Tao S; Guo Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043305. PubMed ID: 25974610 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Yang LM; Shu C; Chen Z; Wu J Phys Rev E; 2020 May; 101(5-1):053309. PubMed ID: 32575276 [TBL] [Abstract][Full Text] [Related]
19. Lattice Boltzmann model for ternary fluids with solid particles. He Q; Li Y; Huang W; Hu Y; Wang Y Phys Rev E; 2020 Mar; 101(3-1):033307. PubMed ID: 32289995 [TBL] [Abstract][Full Text] [Related]
20. Effects of tangential-type boundary condition discontinuities on the accuracy of the lattice Boltzmann method for heat and mass transfer. Li L; AuYeung N; Mei R; Klausner JF Phys Rev E; 2016 Aug; 94(2-1):023307. PubMed ID: 27627412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]