These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35975923)

  • 1. The prefrontal cortex of the Mexican free-tailed bat is more selective to communication calls than primary auditory cortex.
    Macias S; Bakshi K; Troyer T; Smotherman M
    J Neurophysiol; 2022 Sep; 128(3):634-648. PubMed ID: 35975923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Context Modulates Natural Sound Discrimination in Auditory Cortex through Frequency-Specific Adaptation.
    López-Jury L; García-Rosales F; González-Palomares E; Kössl M; Hechavarria JC
    J Neurosci; 2021 Dec; 41(50):10261-10277. PubMed ID: 34750226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topography of sound level representation in the FM sweep selective region of the pallid bat auditory cortex.
    Measor K; Yarrow S; Razak KA
    Hear Res; 2018 Sep; 367():137-148. PubMed ID: 29853324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    Macías S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laminar Organization of FM Direction Selectivity in the Primary Auditory Cortex of the Free-Tailed Bat.
    Macias S; Bakshi K; Smotherman M
    Front Neural Circuits; 2019; 13():76. PubMed ID: 31827425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modified synaptic dynamics predict neural activity patterns in an auditory field within the frontal cortex.
    López-Jury L; Mannel A; García-Rosales F; Hechavarria JC
    Eur J Neurosci; 2020 Feb; 51(4):1011-1025. PubMed ID: 31630441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of the primary auditory cortex of the free-tailed bat Tadarida brasiliensis.
    Macias S; Bakshi K; Smotherman M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 May; 206(3):429-440. PubMed ID: 32036404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of fast amplitude modulations in bat auditory cortex matches communication call-specific sound features.
    Hörpel SG; Firzlaff U
    J Neurophysiol; 2019 Apr; 121(4):1501-1512. PubMed ID: 30785811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of temporal pattern codes for vocalization stimuli in primary auditory cortex.
    Schnupp JW; Hall TM; Kokelaar RF; Ahmed B
    J Neurosci; 2006 May; 26(18):4785-95. PubMed ID: 16672651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms underlying azimuth selectivity in the auditory cortex of the pallid bat.
    Razak KA
    Hear Res; 2012 Aug; 290(1-2):1-12. PubMed ID: 22641192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex-dependent hemispheric asymmetries for processing frequency-modulated sounds in the primary auditory cortex of the mustached bat.
    Washington SD; Kanwal JS
    J Neurophysiol; 2012 Sep; 108(6):1548-66. PubMed ID: 22649207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal selectivity to complex vocalization features emerges in the superficial layers of primary auditory cortex.
    Montes-Lourido P; Kar M; David SV; Sadagopan S
    PLoS Biol; 2021 Jun; 19(6):e3001299. PubMed ID: 34133413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural mechanisms underlying selectivity for the rate and direction of frequency-modulated sweeps in the auditory cortex of the pallid bat.
    Razak KA; Fuzessery ZM
    J Neurophysiol; 2006 Sep; 96(3):1303-19. PubMed ID: 16775213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matched Behavioral and Neural Adaptations for Low Sound Level Echolocation in a Gleaning Bat,
    Measor KR; Leavell BC; Brewton DH; Rumschlag J; Barber JR; Razak KA
    eNeuro; 2017; 4(1):. PubMed ID: 28275715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics.
    Wang X; Merzenich MM; Beitel R; Schreiner CE
    J Neurophysiol; 1995 Dec; 74(6):2685-706. PubMed ID: 8747224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of echolocation calls and neural selectivity for echolocation calls in the pallid bat.
    Razak KA; Fuzessery ZM
    Dev Neurobiol; 2015 Oct; 75(10):1125-39. PubMed ID: 25142131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do auditory cortex neurons represent communication sounds?
    Gaucher Q; Huetz C; Gourévitch B; Laudanski J; Occelli F; Edeline JM
    Hear Res; 2013 Nov; 305():102-12. PubMed ID: 23603138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear spectrotemporal interactions underlying selectivity for complex sounds in auditory cortex.
    Sadagopan S; Wang X
    J Neurosci; 2009 Sep; 29(36):11192-202. PubMed ID: 19741126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.
    Moucha R; Pandya PK; Engineer ND; Rathbun DL; Kilgard MP
    Exp Brain Res; 2005 May; 162(4):417-27. PubMed ID: 15616812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity for spectral motion as a neural computation for encoding natural communication signals in bat inferior colliculus.
    Andoni S; Pollak GD
    J Neurosci; 2011 Nov; 31(46):16529-40. PubMed ID: 22090479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.