BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 35976090)

  • 21. Deep Learning-Based Cell Tracking in Deforming Organs and Moving Animals.
    Wen C
    Methods Mol Biol; 2024; 2800():203-215. PubMed ID: 38709486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A fully-automated, robust, and versatile algorithm for long-term budding yeast segmentation and tracking.
    Wood NE; Doncic A
    PLoS One; 2019; 14(3):e0206395. PubMed ID: 30917124
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Segmentation, Detection, and Tracking of Stem Cell Image by Digital Twins and Lightweight Deep Learning.
    Du X; Liu M; Sun Y
    Comput Intell Neurosci; 2022; 2022():6003293. PubMed ID: 35422850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast cell segmentation in microstructured environments with deep learning.
    Prangemeier T; Wildner C; Françani AO; Reich C; Koeppl H
    Biosystems; 2022 Jan; 211():104557. PubMed ID: 34634444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An aging-independent replicative lifespan in a symmetrically dividing eukaryote.
    Spivey EC; Jones SK; Rybarski JR; Saifuddin FA; Finkelstein IJ
    Elife; 2017 Jan; 6():. PubMed ID: 28139976
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Instant processing of large-scale image data with FACT, a real-time cell segmentation and tracking algorithm.
    Chou TC; You L; Beerens C; Feller KJ; Storteboom J; Chien MP
    Cell Rep Methods; 2023 Nov; 3(11):100636. PubMed ID: 37963463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge.
    Song Y; Ren S; Lu Y; Fu X; Wong KKL
    Comput Methods Programs Biomed; 2022 Jun; 220():106821. PubMed ID: 35487181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Automated Multi-Peak Tracking Kymography (AMTraK): A Tool to Quantify Sub-Cellular Dynamics with Sub-Pixel Accuracy.
    Chaphalkar AR; Jain K; Gangan MS; Athale CA
    PLoS One; 2016; 11(12):e0167620. PubMed ID: 27992448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tracking cell lineages in 3D by incremental deep learning.
    Sugawara K; Çevrim Ç; Averof M
    Elife; 2022 Jan; 11():. PubMed ID: 34989675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comparison between two semantic deep learning frameworks for the autosomal dominant polycystic kidney disease segmentation based on magnetic resonance images.
    Bevilacqua V; Brunetti A; Cascarano GD; Guerriero A; Pesce F; Moschetta M; Gesualdo L
    BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 9):244. PubMed ID: 31830973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepSea is an efficient deep-learning model for single-cell segmentation and tracking in time-lapse microscopy.
    Zargari A; Lodewijk GA; Mashhadi N; Cook N; Neudorf CW; Araghbidikashani K; Hays R; Kozuki S; Rubio S; Hrabeta-Robinson E; Brooks A; Hinck L; Shariati SA
    Cell Rep Methods; 2023 Jun; 3(6):100500. PubMed ID: 37426758
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A novel tracking and analysis system for time-lapse cell imaging of Saccharomyces cerevisiae.
    Kanada F; Ogino Y; Yoshida T; Oki M
    Genes Genet Syst; 2020 Jul; 95(2):75-83. PubMed ID: 32249245
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cheetah: A Computational Toolkit for Cybergenetic Control.
    Pedone E; de Cesare I; Zamora-Chimal CG; Haener D; Postiglione L; La Regina A; Shannon B; Savery NJ; Grierson CS; di Bernardo M; Gorochowski TE; Marucci L
    ACS Synth Biol; 2021 May; 10(5):979-989. PubMed ID: 33904719
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate, precise modeling of cell proliferation kinetics from time-lapse imaging and automated image analysis of agar yeast culture arrays.
    Shah NA; Laws RJ; Wardman B; Zhao LP; Hartman JL
    BMC Syst Biol; 2007 Jan; 1():3. PubMed ID: 17408510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An algorithm to automate yeast segmentation and tracking.
    Doncic A; Eser U; Atay O; Skotheim JM
    PLoS One; 2013; 8(3):e57970. PubMed ID: 23520484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. pcnaDeep: a fast and robust single-cell tracking method using deep-learning mediated cell cycle profiling.
    Gui Y; Xie S; Wang Y; Wang P; Yao R; Gao X; Dong Y; Wang G; Chan KY
    Bioinformatics; 2022 Oct; 38(20):4846-4847. PubMed ID: 36047834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A survey on applications of deep learning in microscopy image analysis.
    Liu Z; Jin L; Chen J; Fang Q; Ablameyko S; Yin Z; Xu Y
    Comput Biol Med; 2021 Jul; 134():104523. PubMed ID: 34091383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the Evaluation Platform.
    Versari C; Stoma S; Batmanov K; Llamosi A; Mroz F; Kaczmarek A; Deyell M; Lhoussaine C; Hersen P; Batt G
    J R Soc Interface; 2017 Feb; 14(127):. PubMed ID: 28179544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.