BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35976700)

  • 1. Redox Behavior of Secondary Solid Iron Species and the Corresponding Effects on Hydroxyl Radical Generation during the Pyrite Oxidation Process.
    Zhao Z; Peng S; Ma C; Yu C; Wu D
    Environ Sci Technol; 2022 Sep; 56(17):12635-12644. PubMed ID: 35976700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.
    Kong L; Hu X; He M
    Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photooxidation of Fe(II) to schwertmannite promotes As(III) oxidation and immobilization on pyrite under acidic conditions.
    Liu L; Guo D; Qiu G; Liu C; Ning Z
    J Environ Manage; 2022 Sep; 317():115425. PubMed ID: 35751250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alumina inhibits pyrite oxidative dissolution by regulating solid film passivation layer and S, Fe, and Al speciation transformation.
    Liu G; Tang J; Li B; Chen C; Wang X
    Chemosphere; 2024 Mar; 352():141366. PubMed ID: 38311037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite.
    Zhao L; Chen Y; Liu Y; Luo C; Wu D
    Chemosphere; 2017 Dec; 188():557-566. PubMed ID: 28915374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfur Vacancies in Pyrite Trigger the Path to Nonradical Singlet Oxygen and Spontaneous Sulfamethoxazole Degradation: Unveiling the Hidden Potential in Sediments.
    Zhu L; Wang H; Sun J; Lu L; Li S
    Environ Sci Technol; 2024 Apr; 58(15):6753-6762. PubMed ID: 38526226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical production by abiotic oxidation of pyrite under estuarine conditions: The effects of aging, seawater anions and illumination.
    Liu R; Dai Y; Feng Y; Sun S; Zhang X; An C; Zhao S
    J Environ Sci (China); 2024 Jan; 135():715-727. PubMed ID: 37778841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II).
    Wu X; Yang J; Liu S; He Z; Wang Y; Qin W; Si Y
    Chemosphere; 2022 Dec; 309(Pt 2):136793. PubMed ID: 36220433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ROS formation driven by pyrite-mediated arsenopyrite oxidation and its potential role on arsenic transformation.
    Zhou S; Gan M; Wang X; Zhang Y; Fang Y; Gu G; Wang Y; Qiu G
    J Hazard Mater; 2023 Feb; 443(Pt A):130151. PubMed ID: 36270187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrite/H
    He GJ; Zhong DJ; Xu YL; Liu P; Zeng SJ; Wang S
    Water Sci Technol; 2021 May; 83(9):2218-2231. PubMed ID: 33989188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence factors for the oxidation of pyrite by oxygen and birnessite in aqueous systems.
    Qiu G; Luo Y; Chen C; Lv Q; Tan W; Liu F; Liu C
    J Environ Sci (China); 2016 Jul; 45():164-76. PubMed ID: 27372130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite.
    Kim JG; Kim HB; Jeong WG; Baek K
    J Hazard Mater; 2021 Oct; 419():126514. PubMed ID: 34323727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applicability study on the degradation of acetaminophen via an H
    Peng S; Feng Y; Liu Y; Wu D
    Chemosphere; 2018 Dec; 212():438-446. PubMed ID: 30153616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxylamine promoted hydroxyl radical production and organic contaminants degradation in oxygenation of pyrite.
    Huang M; Fang G; Chen N; Zhou D
    J Hazard Mater; 2022 May; 429():128380. PubMed ID: 35121297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar irradiation induced oxidation and adsorption of arsenite on natural pyrite.
    Liu L; Guo D; Ning Z; Liu C; Qiu G
    Water Res; 2021 Sep; 203():117545. PubMed ID: 34416646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-situ generation of reactive oxygen species using combination of electrochemical oxidation and metal sulfide.
    Kim JG; Kim HB; Shin DH; Alessi DS; Kwon E; Baek K
    Sci Total Environ; 2021 Oct; 789():147961. PubMed ID: 34052499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suppressive effects of ferric-catecholate complexes on pyrite oxidation.
    Li X; Hiroyoshi N; Tabelin CB; Naruwa K; Harada C; Ito M
    Chemosphere; 2019 Jan; 214():70-78. PubMed ID: 30257197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic Neutrophilic Pyrite Oxidation by a Chemolithoautotrophic Nitrate-Reducing Iron(II)-Oxidizing Culture Enriched from a Fractured Aquifer.
    Jakus N; Mellage A; Höschen C; Maisch M; Byrne JM; Mueller CW; Grathwohl P; Kappler A
    Environ Sci Technol; 2021 Jul; 55(14):9876-9884. PubMed ID: 34247483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions due to Production of Hydroxyl Radicals.
    Cheng D; Yuan S; Liao P; Zhang P
    Environ Sci Technol; 2016 Nov; 50(21):11646-11653. PubMed ID: 27700060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.