These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35976836)

  • 1. Ultrasound Matrix Imaging-Part I: The Focused Reflection Matrix, the F-Factor and the Role of Multiple Scattering.
    Lambert W; Robin J; Cobus LA; Fink M; Aubry A
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3907-3920. PubMed ID: 35976836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Matrix Imaging-Part II: The Distortion Matrix for Aberration Correction Over Multiple Isoplanatic Patches.
    Lambert W; Cobus LA; Robin J; Fink M; Aubry A
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3921-3938. PubMed ID: 35976837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distortion matrix approach for ultrasound imaging of random scattering media.
    Lambert W; Cobus LA; Frappart T; Fink M; Aubry A
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14645-14656. PubMed ID: 32522873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
    Vos HJ; van Neer PL; Mota MM; Verweij MD; van der Steen AF; Volker AW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jan; 63(1):60-71. PubMed ID: 26571525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual stage beamforming in the absence of front-end receive focusing.
    Bera D; Bosch JG; Verweij MD; de Jong N; Vos HJ
    Phys Med Biol; 2017 Jul; 62(16):6631-6648. PubMed ID: 28604358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preliminary study on the separation of specular reflection and backscattering components using synthetic aperture beamforming.
    Nagaoka R; Wilhjelm JE; Hasegawa H
    J Med Ultrason (2001); 2020 Oct; 47(4):493-500. PubMed ID: 32749560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of the Complete Data Set From Focused Transmit Beams.
    Bottenus N
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):30-38. PubMed ID: 29283345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial phantom study on estimation of speed of sound in medium using coherence among received echo signals.
    Hasegawa H; Nagaoka R
    J Med Ultrason (2001); 2019 Jul; 46(3):297-307. PubMed ID: 30848399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative transmission ultrasound tomography: Imaging and performance characteristics.
    Malik B; Terry R; Wiskin J; Lenox M
    Med Phys; 2018 Jul; 45(7):3063-3075. PubMed ID: 29745992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Frequency-Domain Synthetic Aperture Focusing Techniques for Imaging With a High-Frequency Single-Element Focused Transducer.
    Shaswary E; Tavakkoli J; Kumaradas JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):57-70. PubMed ID: 30452355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distributed Aberration Correction Techniques Based on Tomographic Sound Speed Estimates.
    Ali R; Brevett T; Hyun D; Brickson LL; Dahl JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 May; 69(5):1714-1726. PubMed ID: 35353699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coherence-based quantification of acoustic clutter sources in medical ultrasound.
    Long J; Long W; Bottenus N; Trahey G
    J Acoust Soc Am; 2020 Aug; 148(2):1051. PubMed ID: 32873040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved ultrasound image quality with pixel-based beamforming using a Wiener-filter and a SNR-dependent coherence factor.
    Xie HW; Guo H; Zhou GQ; Nguyen NQ; Prager RW
    Ultrasonics; 2022 Feb; 119():106594. PubMed ID: 34628298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual apodization with cross-correlation in the presence of phase aberration and noise.
    Yen JT; Seo CH
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2209-12. PubMed ID: 19163137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive imaging using the generalized coherence factor.
    Li PC; Li ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Feb; 50(2):128-41. PubMed ID: 12625586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of synthetic aperture focusing and coherence factor weighting for intravascular ultrasound imaging.
    Kang S; Lee J; Chang JH
    Ultrasonics; 2021 May; 113():106364. PubMed ID: 33517139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues.
    Aubry A; Derode A
    J Acoust Soc Am; 2011 Jan; 129(1):225-33. PubMed ID: 21303005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential beamforming for synthetic aperture imaging.
    Kortbek J; Jensen JA; Gammelmark KL
    Ultrasonics; 2013 Jan; 53(1):1-16. PubMed ID: 22809678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of parallel transmit beamforming using orthogonal frequency division multiplexing--achievable resolution and interbeam interference.
    Demi L; Viti J; Kusters L; Guidi F; Tortoli P; Mischi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2310-20. PubMed ID: 24158287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach to multibeam covariance matrices for adaptive beamforming in ultrasonography.
    Jensen AC; Austeng A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1139-48. PubMed ID: 22711409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.