These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35977055)

  • 1. Uncovering natural genetic variants of the SOS pathway to improve salinity tolerance in maize.
    Arciniegas Vega JP; Melino VJ
    New Phytol; 2022 Oct; 236(2):313-315. PubMed ID: 35977055
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterization of the Salt Overly Sensitive pathway genes in sugarcane under salinity stress.
    Brindha C; Vasantha S; Raja AK; Tayade AS
    Physiol Plant; 2021 Apr; 171(4):677-687. PubMed ID: 33063359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize.
    Sandhu D; Pudussery MV; Kumar R; Pallete A; Markley P; Bridges WC; Sekhon RS
    Funct Integr Genomics; 2020 Mar; 20(2):261-275. PubMed ID: 31522293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The classical SOS pathway confers natural variation of salt tolerance in maize.
    Zhou X; Li J; Wang Y; Liang X; Zhang M; Lu M; Guo Y; Qin F; Jiang C
    New Phytol; 2022 Oct; 236(2):479-494. PubMed ID: 35633114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na
    Zhang M; Cao Y; Wang Z; Wang ZQ; Shi J; Liang X; Song W; Chen Q; Lai J; Jiang C
    New Phytol; 2018 Feb; 217(3):1161-1176. PubMed ID: 29139111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brassinosteroid-signaling kinase ZmBSK7 enhances salt stress tolerance in maize.
    Zhang C; Miao Y; Xiang Y; Zhang A
    Biochem Biophys Res Commun; 2024 Sep; 723():150222. PubMed ID: 38850813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A maize calcineurin B-like interacting protein kinase ZmCIPK42 confers salt stress tolerance.
    Chen X; Chen G; Li J; Hao X; Tuerxun Z; Chang X; Gao S; Huang Q
    Physiol Plant; 2021 Jan; 171(1):161-172. PubMed ID: 33064336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the maize salt overly sensitive pathway by ZmSK3 and ZmSK4.
    Li J; Zhou X; Wang Y; Song S; Ma L; He Q; Lu M; Zhang K; Yang Y; Zhao Q; Jin W; Jiang C; Guo Y
    J Genet Genomics; 2023 Dec; 50(12):960-970. PubMed ID: 37127254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance.
    Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K
    Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize.
    Zhang M; Li Y; Liang X; Lu M; Lai J; Song W; Jiang C
    Plant Biotechnol J; 2023 Jan; 21(1):97-108. PubMed ID: 36114820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous expression of Arabidopsis SOS3 increases salinity tolerance in Petunia.
    Madadi K; Ahmadabadi M; Pazhouhandeh M
    Mol Biol Rep; 2022 Jul; 49(7):6553-6562. PubMed ID: 35576049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress.
    Tang RJ; Liu H; Bao Y; Lv QD; Yang L; Zhang HX
    Plant Mol Biol; 2010 Nov; 74(4-5):367-80. PubMed ID: 20803312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.).
    Geilfus CM; Zörb C; Mühling KH
    Plant Physiol Biochem; 2010 Dec; 48(12):993-8. PubMed ID: 20970350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting plant salt tolerance: novel components of the SOS pathway.
    Ali A; Petrov V; Yun DJ; Gechev T
    Trends Plant Sci; 2023 Sep; 28(9):1060-1069. PubMed ID: 37117077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Maize transcription factor ZmEREB20 enhanced salt tolerance in transgenic Arabidopsis.
    Fu J; Zhu C; Wang C; Liu L; Shen Q; Xu D; Wang Q
    Plant Physiol Biochem; 2021 Feb; 159():257-267. PubMed ID: 33395583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SOS1 and halophytism.
    Oh DH; Zahir A; Yun DJ; Bressan RA; Bohnert HJ
    Plant Signal Behav; 2009 Nov; 4(11):1081-3. PubMed ID: 19838069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated single-molecule real-time sequencing and RNA sequencing reveal the molecular mechanisms of salt tolerance in a novel synthesized polyploid genetic bridge between maize and its wild relatives.
    Li X; Wang X; Ma Q; Zhong Y; Zhang Y; Zhang P; Li Y; He R; Zhou Y; Li Y; Cheng M; Yan X; Li Y; He J; Iqbal MZ; Rong T; Tang Q
    BMC Genomics; 2023 Jan; 24(1):55. PubMed ID: 36717785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of maize calcium-dependent protein kinase (ZmCPK11) improves salt tolerance in transgenic Arabidopsis plants by regulating sodium and potassium homeostasis and stabilizing photosystem II.
    Borkiewicz L; Polkowska-Kowalczyk L; Cieśla J; Sowiński P; Jończyk M; Rymaszewski W; Szymańska KP; Jaźwiec R; Muszyńska G; Szczegielniak J
    Physiol Plant; 2020 Jan; 168(1):38-57. PubMed ID: 30714160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A HAK family Na
    Zhang M; Liang X; Wang L; Cao Y; Song W; Shi J; Lai J; Jiang C
    Nat Plants; 2019 Dec; 5(12):1297-1308. PubMed ID: 31819228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing Essentiality of
    Shahzad B; Shabala L; Zhou M; Venkataraman G; Solis CA; Page D; Chen ZH; Shabala S
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36077294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.