These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35977108)

  • 61. Reliability and validity of a new variable-power performance test in road cyclists.
    Sharma AP; Elliott AD; Bentley DJ
    Int J Sports Physiol Perform; 2015 Apr; 10(3):278-84. PubMed ID: 25117436
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Human critical power-oxygen uptake relationship at different pedalling frequencies.
    Barker T; Poole DC; Noble ML; Barstow TJ
    Exp Physiol; 2006 May; 91(3):621-32. PubMed ID: 16527863
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Time of VO(2)max plateau and post-exercise oxygen consumption during incremental exercise testing in young mountain bike and road cyclists.
    Hebisz P; Hebisz R; Borkowski J; Zatoń M
    Physiol Res; 2018 Nov; 67(5):711-719. PubMed ID: 30044113
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Durability in Professional Cyclists: A Field Study.
    Valenzuela PL; Alejo LB; Ozcoidi LM; Lucia A; Santalla A; Barranco-Gil D
    Int J Sports Physiol Perform; 2023 Jan; 18(1):99-103. PubMed ID: 36521188
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ventilatory acclimatisation is beneficial for high-intensity exercise at altitude in elite cyclists.
    Townsend NE; Gore CJ; Ebert TR; Martin DT; Hahn AG; Chow CM
    Eur J Sport Sci; 2016 Nov; 16(8):895-902. PubMed ID: 26894371
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Determination of critical power using a 3-min all-out cycling test.
    Vanhatalo A; Doust JH; Burnley M
    Med Sci Sports Exerc; 2007 Mar; 39(3):548-55. PubMed ID: 17473782
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Influence of upright versus time trial cycling position on determination of critical power and W' in trained cyclists.
    Kordi M; Fullerton C; Passfield L; Parker Simpson L
    Eur J Sport Sci; 2019 Mar; 19(2):192-198. PubMed ID: 30009673
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A novel submaximal cycle test to monitor fatigue and predict cycling performance.
    Lamberts RP; Swart J; Noakes TD; Lambert MI
    Br J Sports Med; 2011 Aug; 45(10):797-804. PubMed ID: 19622525
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Kinetics of VO(2) in professional cyclists.
    Lucía A; Hoyos J; Santalla A; Pérez M; Chicharro JL
    Med Sci Sports Exerc; 2002 Feb; 34(2):320-5. PubMed ID: 11828243
    [TBL] [Abstract][Full Text] [Related]  

  • 70. An evaluation of the predictive validity and reliability of ventilatory threshold.
    Amann M; Subudhi AW; Walker J; Eisenman P; Shultz B; Foster C
    Med Sci Sports Exerc; 2004 Oct; 36(10):1716-22. PubMed ID: 15595292
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A comparison of methods to estimate anaerobic capacity: Accumulated oxygen deficit and W' during constant and all-out work-rate profiles.
    Muniz-Pumares D; Pedlar C; Godfrey R; Glaister M
    J Sports Sci; 2017 Dec; 35(23):2357-2364. PubMed ID: 28019724
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The laboratory assessment of endurance performance in cyclists.
    Hopkins SR; McKenzie DC
    Can J Appl Physiol; 1994 Sep; 19(3):266-74. PubMed ID: 8000353
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Respiratory Compensation Point is Not a Valid Surrogate for Critical Power.
    Leo JA; Sabapathy S; Simmonds MJ; Cross TJ
    Med Sci Sports Exerc; 2017 Jul; 49(7):1452-1460. PubMed ID: 28166117
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Prior upper body exercise reduces cycling work capacity but not critical power.
    Johnson MA; Mills DE; Brown PI; Sharpe GR
    Med Sci Sports Exerc; 2014 Apr; 46(4):802-8. PubMed ID: 24042306
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Minimal Effects of Moderate Normobaric Hypoxia on the Upper Body Work-Time Relationship in Recreationally Active Women.
    Starling-Smith TM; La Monica MB; Stout JR; Fukuda DH
    High Alt Med Biol; 2020 Mar; 21(1):62-69. PubMed ID: 31928420
    [No Abstract]   [Full Text] [Related]  

  • 76. Methodological Approaches and Related Challenges Associated With the Determination of Critical Power and Curvature Constant.
    Muniz-Pumares D; Karsten B; Triska C; Glaister M
    J Strength Cond Res; 2019 Feb; 33(2):584-596. PubMed ID: 30531413
    [TBL] [Abstract][Full Text] [Related]  

  • 77. VO2 slow component is independent from critical power.
    Bosquet L; Larrouturou M; Lheureux O; Carter H
    Int J Sports Med; 2011 Sep; 32(9):693-7. PubMed ID: 21567350
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effects of nitrate on the power-duration relationship for severe-intensity exercise.
    Kelly J; Vanhatalo A; Wilkerson DP; Wylie LJ; Jones AM
    Med Sci Sports Exerc; 2013 Sep; 45(9):1798-806. PubMed ID: 23475164
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Detection of the change point in oxygen uptake during an incremental exercise test using recursive residuals: relationship to the plasma lactate accumulation and blood acid base balance.
    Zoladz JA; Szkutnik Z; Majerczak J; Duda K
    Eur J Appl Physiol Occup Physiol; 1998 Sep; 78(4):369-77. PubMed ID: 9754978
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The cycling physiology of Miguel Indurain 14 years after retirement.
    Mujika I
    Int J Sports Physiol Perform; 2012 Dec; 7(4):397-400. PubMed ID: 22868823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.